27,600 research outputs found

    Aggregation functions based on penalties

    Full text link
    This article studies a large class of averaging aggregation functions based on minimizing a distance from the vector of inputs, or equivalently, minimizing a penalty imposed for deviations of individual inputs from the aggregated value. We provide a systematization of various types of penalty based aggregation functions, and show how many special cases arise as the result. We show how new aggregation functions can be constructed either analytically or numerically and provide many examples. We establish connection with the maximum likelihood principle, and present tools for averaging experimental noisy data with distinct noise distributions.<br /

    Aggregation for Gaussian regression

    Full text link
    This paper studies statistical aggregation procedures in the regression setting. A motivating factor is the existence of many different methods of estimation, leading to possibly competing estimators. We consider here three different types of aggregation: model selection (MS) aggregation, convex (C) aggregation and linear (L) aggregation. The objective of (MS) is to select the optimal single estimator from the list; that of (C) is to select the optimal convex combination of the given estimators; and that of (L) is to select the optimal linear combination of the given estimators. We are interested in evaluating the rates of convergence of the excess risks of the estimators obtained by these procedures. Our approach is motivated by recently published minimax results [Nemirovski, A. (2000). Topics in non-parametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1998). Lecture Notes in Math. 1738 85--277. Springer, Berlin; Tsybakov, A. B. (2003). Optimal rates of aggregation. Learning Theory and Kernel Machines. Lecture Notes in Artificial Intelligence 2777 303--313. Springer, Heidelberg]. There exist competing aggregation procedures achieving optimal convergence rates for each of the (MS), (C) and (L) cases separately. Since these procedures are not directly comparable with each other, we suggest an alternative solution. We prove that all three optimal rates, as well as those for the newly introduced (S) aggregation (subset selection), are nearly achieved via a single ``universal'' aggregation procedure. The procedure consists of mixing the initial estimators with weights obtained by penalized least squares. Two different penalties are considered: one of them is of the BIC type, the second one is a data-dependent 1\ell_1-type penalty.Comment: Published in at http://dx.doi.org/10.1214/009053606000001587 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Solution of linear ill-posed problems by model selection and aggregation

    Full text link
    We consider a general statistical linear inverse problem, where the solution is represented via a known (possibly overcomplete) dictionary that allows its sparse representation. We propose two different approaches. A model selection estimator selects a single model by minimizing the penalized empirical risk over all possible models. By contrast with direct problems, the penalty depends on the model itself rather than on its size only as for complexity penalties. A Q-aggregate estimator averages over the entire collection of estimators with properly chosen weights. Under mild conditions on the dictionary, we establish oracle inequalities both with high probability and in expectation for the two estimators. Moreover, for the latter estimator these inequalities are sharp. The proposed procedures are implemented numerically and their performance is assessed by a simulation study.Comment: 20 pages, 2 figure

    Monetary policy transmission asymmetries in a heterogeneous monetary union: a simple contractual solution

    Get PDF
    In this paper, we show that imposing linear penalties on inflation and income divergences to a common central bank could be an interesting solution to stabilization problems in a heterogeneous monetary Union. We find an “optimal contract†for monetary policy which enforces the optimal solution for maximizing Union-wide welfare. This contract may provide a good institutional response to stabilization problems raised by monetary policy transmission asymmetries, as described in De Grauwe & Senegas (2004).

    Consensus image method for unknown noise removal

    Get PDF
    Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.This work is supported by the European Commission under Contract No. 238819 (MIBISOC Marie Curie ITN). H. Bustince was supported by Project TIN 2010-15055 of the Spanish Ministry of Science

    Split-domain calibration of an ecosystem model using satellite ocean colour data

    Get PDF
    The application of satellite ocean colour data to the calibration of plankton ecosystem models for large geographic domains, over which their ideal parameters cannot be assumed to be invariant, is investigated. A method is presented for seeking the number and geographic scope of parameter sets which allows the best fit to validation data to be achieved. These are independent data not used in the parameter estimation process. The goodness-of-fit of the optimally calibrated model to the validation data is an objective measure of merit for the model, together with its external forcing data. Importantly, this is a statistic which can be used for comparative evaluation of different models. The method makes use of observations from multiple locations, referred to as stations, distributed across the geographic domain. It relies on a technique for finding groups of stations which can be aggregated for parameter estimation purposes with minimal increase in the resulting misfit between model and observations.The results of testing this split-domain calibration method for a simple zero dimensional model, using observations from 30 stations in the North Atlantic, are presented. The stations are divided into separate calibration and validation sets. One year of ocean colour data from each station were used in conjunction with a climatological estimate of the station’s annual nitrate maximum. The results demonstrate the practical utility of the method and imply that an optimal fit of the model to the validation data would be given by two parameter sets. The corresponding division of the North Atlantic domain into two provinces allows a misfit-based cost to be achieved which is 25% lower than that for the single parameter set obtained using all of the calibration stations. In general, parameters are poorly constrained, contributing to a high degree of uncertainty in model output for unobserved variables. This suggests that limited progress towards a definitive model calibration can be made without including other types of observations

    Simultaneous adaptation to the margin and to complexity in classification

    Get PDF
    We consider the problem of adaptation to the margin and to complexity in binary classification. We suggest an exponential weighting aggregation scheme. We use this aggregation procedure to construct classifiers which adapt automatically to margin and complexity. Two main examples are worked out in which adaptivity is achieved in frameworks proposed by Steinwart and Scovel [Learning Theory. Lecture Notes in Comput. Sci. 3559 (2005) 279--294. Springer, Berlin; Ann. Statist. 35 (2007) 575--607] and Tsybakov [Ann. Statist. 32 (2004) 135--166]. Adaptive schemes, like ERM or penalized ERM, usually involve a minimization step. This is not the case for our procedure.Comment: Published in at http://dx.doi.org/10.1214/009053607000000055 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparsity oracle inequalities for the Lasso

    Full text link
    This paper studies oracle properties of 1\ell_1-penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of non-zero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and the regression matrix is not positive definite. They can be applied to high-dimensional linear regression, to nonparametric adaptive regression estimation and to the problem of aggregation of arbitrary estimators.Comment: Published at http://dx.doi.org/10.1214/07-EJS008 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore