211 research outputs found

    Algebraic Multigrid (AMG) for Saddle Point Systems

    Get PDF
    We introduce an algebraic multigrid method for the solution of matrices with saddle point structure. Such matrices e.g. arise after discretization of a second order partial differential equation (PDE) subject to linear constraints. Algebraic multigrid (AMG) methods provide optimal linear solvers for many applications in science, engineering or economics. The strength of AMG is the automatic construction of a multigrid hierarchy adapted to the linear system to be solved. However, the scope of AMG is mainly limited to symmetric positive definite matrices. An essential feature of these matrices is that they define an inner product and a norm. In AMG, matrix-dependent norms play an important role to investigate the action of the smoother, to verify approximation properties for the interpolation operator and to show convergence for the overall multigrid cycle. Furthermore, the non-singularity of all coarse grid operators in a AMG hierarchy is ensured by the positive definiteness of the initial fine level matrix. Saddle point matrices have positive and negative eigenvalues and hence are indefinite. In consequence, if conventional AMG is applied to these matrices, the method will not always converge or may even break down if a singular coarse grid operator is computed. In this thesis, we describe how to circumvent these difficulties and to build a stable saddle point AMG hierarchy. We restrict ourselves to the class of Stokes-like problems, i.e. saddle point matrices which contain a symmetric positive definite submatrix that arises from the discretization of a second order PDE. Our approach is purely algebraic, i.e. it does not require any information not contained in the matrix itself. We identify the variables associated to the positive definite submatrix block (the so-called velocity components) and compute an inexact symmetric positive Schur complement matrix for the remaining degrees of freedom (in the following called pressure components). Then, we employ classical AMG methods for these definite operators individually and obtain an interpolation operator for the velocity components and an interpolation operator for the pressure matrix. The key idea of our method is to not just merge these interpolation matrices into a single prolongation operator for the overall system, but to introduce additional couplings between velocity and pressure. The coarse level operator is computed using this "stabilized" interpolation operator. We present three different interpolation stabilization techniques, for which we show that they resulting coarse grid operator is non-singular. For one of these methods, we can prove two-grid convergence. The numerical results obtained from finite difference and finite element discretizations of saddle point PDEs demonstrate the practical applicability of our approach

    Why diffusion-based preconditioning of Richards equation works: spectral analysis and computational experiments at very large scale

    Full text link
    We consider here a cell-centered finite difference approximation of the Richards equation in three dimensions, averaging for interface values the hydraulic conductivity K=K(p)K=K(p), a highly nonlinear function, by arithmetic, upstream, and harmonic means. The nonlinearities in the equation can lead to changes in soil conductivity over several orders of magnitude and discretizations with respect to space variables often produce stiff systems of differential equations. A fully implicit time discretization is provided by \emph{backward Euler} one-step formula; the resulting nonlinear algebraic system is solved by an inexact Newton Armijo-Goldstein algorithm, requiring the solution of a sequence of linear systems involving Jacobian matrices. We prove some new results concerning the distribution of the Jacobians eigenvalues and the explicit expression of their entries. Moreover, we explore some connections between the saturation of the soil and the ill-conditioning of the Jacobians. The information on eigenvalues justifies the effectiveness of some preconditioner approaches which are widely used in the solution of Richards equation. We also propose a new software framework to experiment with scalable and robust preconditioners suitable for efficient parallel simulations at very large scales. Performance results on a literature test case show that our framework is very promising in the advance towards realistic simulations at extreme scale

    HAZniCS -- Software Components for Multiphysics Problems

    Full text link
    We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of the paper is on the design and implementation of a pool of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue
    • …
    corecore