1,792 research outputs found

    A Priority Rate-Based Routing Protocol for wireless multimedia sensor networks

    Get PDF
    The development of affordable hardware has made it possible to transmit multimedia data over a wireless medium using sensor devices. Deployed sensors span larger geographical areas, generating different kinds of traffic that need to be communicated either in real-time or non-real-time mode to the sink. The tiny sized design of sensor nodes has made them even more attractive in various environments as they can be left unattended for longer periods. Since sensor nodes are equipped with limited resources, newer energy-efficient protocols and architectures are required in order to meet requirements within their limited capabilities when dealing with multimedia data. This is because multimedia applications are characterized by strict quality of service requirements that distinctively differentiate them from other data types during transmission. However, the large volume of data produced by the sensor nodes can easily cause traffic congestion making it difficult to meet these requirements. Congestion has negative impacts on the data transmitted as well as the sensor network at large. Failure to control congestion will affect the quality of multimedia data received at the sink and further shorten the system lifetime. Next generation wireless sensor networks are predicted to deploy a different model where service is allocated to multimedia while bearing congestion in mind. Applying traditional wireless sensor routing algorithms to wireless multimedia sensor networks may lead to high delay and poor visual quality for multimedia applications. In this research, a Priority Rate-Based Routing Protocol (PRRP) that assigns priorities to traffic depending on their service requirements is proposed. PRRP detects congestion by using adaptive random early detection (A-RED) and a priority rate-based adjustment technique to control congestion. We study the performance of our proposed multi-path routing algorithm for real-time traffic when mixed with three non real-time traffic each with a different priority: high, medium or low. Simulation results show that the proposed algorithm performs better when compared to two existing algorithms, PCCP and PBRC-SD, in terms of queueing delay, packet loss and throughput

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Context-Aware Privacy Protection Framework for Wireless Sensor Networks

    Get PDF

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152

    A Centralized Energy Management System for Wireless Sensor Networks

    Get PDF
    This document presents the Centralized Energy Management System (CEMS), a dynamic fault-tolerant reclustering protocol for wireless sensor networks. CEMS reconfigures a homogeneous network both periodically and in response to critical events (e.g. cluster head death). A global TDMA schedule prevents costly retransmissions due to collision, and a genetic algorithm running on the base station computes cluster assignments in concert with a head selection algorithm. CEMS\u27 performance is compared to the LEACH-C protocol in both normal and failure-prone conditions, with an emphasis on each protocol\u27s ability to recover from unexpected loss of cluster heads

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security

    Predictive Duty Cycling of Radios and Cameras using Augmented Sensing in Wireless Camera Networks

    Get PDF
    Energy efficiency dominates practically every aspect of the design of wireless camera networks (WCNs), and duty cycling of radios and cameras is an important tool for achieving high energy efficiencies. However, duty cycling in WCNs is made complex by the camera nodes having to anticipate the arrival of the objects in their field-of-view. What adds to this complexity is the fact that radio duty cycling and camera duty cycling are tightly coupled notions in WCNs. Abstract In this dissertation, we present a predictive framework to provide camera nodes with an ability to anticipate the arrival of an object in the field-of-view of their cameras. This allows a predictive adaption of network parameters simultaneously in multiple layers. Such anticipatory approach is made possible by enabling each camera node in the network to track an object beyond its direct sensing range and to adapt network parameters in multiple layers before the arrival of the object in its sensing range. The proposed framework exploits a single spare bit in the MAC header of the 802.15.4 protocol for creating this beyond-the-sensing-rage capability for the camera nodes. In this manner, our proposed approach for notifying the nodes about the current state of the object location entails no additional communication overhead. Our experimental evaluations based on large-scale simulations as well as an Imote2-based wireless camera network demonstrate that the proposed predictive adaptation approach, while providing comparable application-level performance, significantly reduces energy consumption compared to the approaches addressing only a single layer adaptation or those with reactive adaptation
    corecore