141 research outputs found

    Economic FAQs About the Internet

    Get PDF
    This is a set of Frequently Asked Questions (and answers) about the economic, institutional, and technological structure of the Internet. We describe the history and current state of the Internet, discuss some of the pressing economic and regulatory problems, and speculate about future developments.Internet, telecommunications, congestion pricing, National Information Infrastructure

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2

    Analysis of Inter-Domain Routing Requirements and History

    Full text link

    Bandwidth is Political: Reachability in the Public Internet

    Full text link

    On the importance of Internet eXchange Points for today's Internet ecosystem

    Full text link
    Internet eXchange Points (IXPs) are generally considered to be the successors of the four Network Access Points that were mandated as part of the decommissioning of the NSFNET in 1994/95 to facilitate the transition from the NSFNET to the "public Internet" as we know it today. While this popular view does not tell the whole story behind the early beginnings of IXPs, what is true is that since around 1994, the number of operational IXPs worldwide has grown to more than 300 (as of May 2013), with the largest IXPs handling daily traffic volumes comparable to those carried by the largest Tier-1 ISPs, but IXPs have never really attracted any attention from the networking research community. At first glance, this lack of interest seems understandable as IXPs have apparently little to do with current "hot" topic areas such as data centers and cloud services or software defined networking (SDN) and mobile communication. However, we argue in this article that, in fact, IXPs are all about data centers and cloud services and even SDN and mobile communication and should be of great interest to networking researchers interested in understanding the current and future Internet ecosystem. To this end, we survey the existing but largely unknown sources of publicly available information about IXPs to describe their basic technical and operational aspects and highlight the critical differences among the various IXPs in the different regions of the world, especially in Europe and North America. More importantly, we illustrate the important role that IXPs play in today's Internet ecosystem and discuss how IXP-driven innovation in Europe is shaping and redefining the Internet marketplace, not only in Europe but increasingly so around the world.Comment: 10 pages, keywords: Internet Exchange Point, Internet Architecture, Peering, Content Deliver

    Privacy-preserving Intelligent Resource Allocation for Federated Edge Learning in Quantum Internet

    Full text link
    Federated edge learning (FEL) is a promising paradigm of distributed machine learning that can preserve data privacy while training the global model collaboratively. However, FEL is still facing model confidentiality issues due to eavesdropping risks of exchanging cryptographic keys through traditional encryption schemes. Therefore, in this paper, we propose a hierarchical architecture for quantum-secured FEL systems with ideal security based on the quantum key distribution (QKD) to facilitate public key and model encryption against eavesdropping attacks. Specifically, we propose a stochastic resource allocation model for efficient QKD to encrypt FEL keys and models. In FEL systems, remote FEL workers are connected to cluster heads via quantum-secured channels to train an aggregated global model collaboratively. However, due to the unpredictable number of workers at each location, the demand for secret-key rates to support secure model transmission to the server is unpredictable. The proposed systems need to efficiently allocate limited QKD resources (i.e., wavelengths) such that the total cost is minimized in the presence of stochastic demand by formulating the optimization problem for the proposed architecture as a stochastic programming model. To this end, we propose a federated reinforcement learning-based resource allocation scheme to solve the proposed model without complete state information. The proposed scheme enables QKD managers and controllers to train a global QKD resource allocation policy while keeping their private experiences local. Numerical results demonstrate that the proposed schemes can successfully achieve the cost-minimizing objective under uncertain demand while improving the training efficiency by about 50\% compared to state-of-the-art schemes

    The Evolution of Internet interconnections

    Get PDF
    In 1995, the NSF officially shut down the NSFNet backbone, thereby ending the nascent Internets early architecture as a single backbone network. Today, the Internet is a group of loosely interconnected networks run by many diverse companies. These interconnections are in no way controlled by any industry or government agency, and are therefore held together only by the market demands of the Internet community. Although the FCC has traditionally maintained a stance of unregulation of all information and computer networks, they have increasingly show interest in ensuring the rapid deployment of Internet access. In addition, as more and more critical elements of communication are implemented on the Internet, some safeguards ensuring end-to-end connectivity, and therefore on maintaining the interconnection between networks, are needed. This paper discusses the history and evolution of Internet interconnections, compares and contrasts them to traditional telephony interconnections, and explores the possibility of regulation over such connections. This paper covers events up to the end of 1999

    Regulatory Treatment of IP Transport and Services

    Get PDF
    Current U.S. regulatory policy is incoherent in its treatment of packet-oriented data communications services. Services based on X.25, Frame Relay or ATM protocols are regulated as telecommunications services, while IP packet transport is lumped together with applications such as email and the World Wide Web -- and treated as an unregulated information service. Uncertainty also reigns over the appropriate treatment of IP telephony. As IP transport becomes an ever more significant fraction of all telecommunications, public policy problems posed by this inconsistent treatment are likely to increase

    An investigation into some critical computer networking parameters : Internet addressing and routing

    Get PDF
    This thesis describes the evaluation of several proposals suggested as replacements for the currenT Internet's TCPJIP protocol suite. The emphasis of this thesis is on how the proposals solve the current routing and addressing problems associated with the Internet. The addressing problem is found to be related to address space depletion, and the routing problem related to excessive routing costs. The evaluation is performed based on criteria selected for their applicability as future Internet design criteria. AIl the protocols are evaluated using the above-mentioned criteria. It is concluded that the most suitable addressing mechanism is an expandable multi-level format, with a logical separation of location and host identification information. Similarly, the most suitable network representation technique is found to be an unrestricted hierarchical structure which uses a suitable abstraction mechanism. It is further found that these two solutions could adequately solve the existing addressing and routing problems and allow substantial growth of the Internet
    • …
    corecore