8,784 research outputs found

    Fuzzy set methods for object recognition in space applications

    Get PDF
    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Crowd Localization from Gaussian Mixture Scoped Knowledge and Scoped Teacher

    Full text link
    Crowd localization is to predict each instance head position in crowd scenarios. Since the distance of instances being to the camera are variant, there exists tremendous gaps among scales of instances within an image, which is called the intrinsic scale shift. The core reason of intrinsic scale shift being one of the most essential issues in crowd localization is that it is ubiquitous in crowd scenes and makes scale distribution chaotic. To this end, the paper concentrates on access to tackle the chaos of the scale distribution incurred by intrinsic scale shift. We propose Gaussian Mixture Scope (GMS) to regularize the chaotic scale distribution. Concretely, the GMS utilizes a Gaussian mixture distribution to adapt to scale distribution and decouples the mixture model into sub-normal distributions to regularize the chaos within the sub-distributions. Then, an alignment is introduced to regularize the chaos among sub-distributions. However, despite that GMS is effective in regularizing the data distribution, it amounts to dislodging the hard samples in training set, which incurs overfitting. We assert that it is blamed on the block of transferring the latent knowledge exploited by GMS from data to model. Therefore, a Scoped Teacher playing a role of bridge in knowledge transform is proposed. What' s more, the consistency regularization is also introduced to implement knowledge transform. To that effect, the further constraints are deployed on Scoped Teacher to derive feature consistence between teacher and student end. With proposed GMS and Scoped Teacher implemented on five mainstream datasets of crowd localization, the extensive experiments demonstrate the superiority of our work. Moreover, comparing with existing crowd locators, our work achieves state-of-the-art via F1-meansure comprehensively on five datasets.Comment: Accepted by IEEE TI

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Quality Aware Network for Set to Set Recognition

    Full text link
    This paper targets on the problem of set to set recognition, which learns the metric between two image sets. Images in each set belong to the same identity. Since images in a set can be complementary, they hopefully lead to higher accuracy in practical applications. However, the quality of each sample cannot be guaranteed, and samples with poor quality will hurt the metric. In this paper, the quality aware network (QAN) is proposed to confront this problem, where the quality of each sample can be automatically learned although such information is not explicitly provided in the training stage. The network has two branches, where the first branch extracts appearance feature embedding for each sample and the other branch predicts quality score for each sample. Features and quality scores of all samples in a set are then aggregated to generate the final feature embedding. We show that the two branches can be trained in an end-to-end manner given only the set-level identity annotation. Analysis on gradient spread of this mechanism indicates that the quality learned by the network is beneficial to set-to-set recognition and simplifies the distribution that the network needs to fit. Experiments on both face verification and person re-identification show advantages of the proposed QAN. The source code and network structure can be downloaded at https://github.com/sciencefans/Quality-Aware-Network.Comment: Accepted at CVPR 201

    Res2Net: A New Multi-scale Backbone Architecture

    Full text link
    Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.Comment: 11 pages, 7 figure
    corecore