27,734 research outputs found

    Aggregation Algorithm Vs. Average for Time Series Prediction

    Get PDF
    Learning with expert advice as a scheme of on-line learning has been very successfully applied to various learning problems due to its strong theoretical basis. In this paper, for the purpose of times se- ries prediction, we investigate the application of Aggregation Algorithm, which a generalisation of the famous weighted majority algorithm. The results of the experiments done, show that the Aggregation Algorithm performs very well in comparison to average

    Learning to Predict with Highly Granular Temporal Data: Estimating individual behavioral profiles with smart meter data

    Get PDF
    Big spatio-temporal datasets, available through both open and administrative data sources, offer significant potential for social science research. The magnitude of the data allows for increased resolution and analysis at individual level. While there are recent advances in forecasting techniques for highly granular temporal data, little attention is given to segmenting the time series and finding homogeneous patterns. In this paper, it is proposed to estimate behavioral profiles of individuals' activities over time using Gaussian Process-based models. In particular, the aim is to investigate how individuals or groups may be clustered according to the model parameters. Such a Bayesian non-parametric method is then tested by looking at the predictability of the segments using a combination of models to fit different parts of the temporal profiles. Model validity is then tested on a set of holdout data. The dataset consists of half hourly energy consumption records from smart meters from more than 100,000 households in the UK and covers the period from 2015 to 2016. The methodological approach developed in the paper may be easily applied to datasets of similar structure and granularity, for example social media data, and may lead to improved accuracy in the prediction of social dynamics and behavior

    Neural network ensembles: Evaluation of aggregation algorithms

    Get PDF
    Ensembles of artificial neural networks show improved generalization capabilities that outperform those of single networks. However, for aggregation to be effective, the individual networks must be as accurate and diverse as possible. An important problem is, then, how to tune the aggregate members in order to have an optimal compromise between these two conflicting conditions. We present here an extensive evaluation of several algorithms for ensemble construction, including new proposals and comparing them with standard methods in the literature. We also discuss a potential problem with sequential aggregation algorithms: the non-frequent but damaging selection through their heuristics of particularly bad ensemble members. We introduce modified algorithms that cope with this problem by allowing individual weighting of aggregate members. Our algorithms and their weighted modifications are favorably tested against other methods in the literature, producing a sensible improvement in performance on most of the standard statistical databases used as benchmarks.Comment: 35 pages, 2 figures, In press AI Journa

    Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis

    Full text link
    We present a new high-resolution global renewable energy atlas ({REatlas}) that can be used to calculate customised hourly time series of wind and solar PV power generation. In this paper, the atlas is applied to produce 32-year-long hourly model wind power time series for Denmark for each historical and future year between 1980 and 2035. These are calibrated and validated against real production data from the period 2000 to 2010. The high number of years allows us to discuss how the characteristics of Danish wind power generation varies between individual weather years. As an example, the annual energy production is found to vary by ±10%\pm10\% from the average. Furthermore, we show how the production pattern change as small onshore turbines are gradually replaced by large onshore and offshore turbines. Finally, we compare our wind power time series for 2020 to corresponding data from a handful of Danish energy system models. The aim is to illustrate how current differences in model wind may result in significant differences in technical and economical model predictions. These include up to 15%15\% differences in installed capacity and 40%40\% differences in system reserve requirements
    corecore