3,982 research outputs found

    Counting aggregate classifiers.

    Get PDF
    There are many methods to design classifiers for the supervised classification problem. In this paper, we study the problem of aggregating classifiers. We construct an algorithm to count the number of distinct aggregate classifiers. This leads to a new way of finding a best aggregate classifier. When there are only two classes, we explore the link between aggregating classifiers and n-bit boolean functions. Further, the sequence of the number of distinct aggregated classifiers appears to be new.Boolean function; Classification; Classifiers; Design; Functions; Methods; Studies; Supervised classification; Weighted majority vote;

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge

    Counting and enumerating aggregate classifiers

    Get PDF
    peer reviewedaudience: researcherWe propose a generic model for the "weighted voting" aggregation step performed by several methods in supervised classification. Further, we construct an algorithm to count the number of distinct aggregate classifiers that arise in this model. When there are only two classes in the classification problem, we show that a class of functions that arises from aggregate classifiers coincides with the class of self-dual positive threshold Boolean functions

    Ensemble Learning for Free with Evolutionary Algorithms ?

    Get PDF
    Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles

    Two-Stage Bagging Pruning for Reducing the Ensemble Size and Improving the Classification Performance

    Get PDF
    Ensemble methods, such as the traditional bagging algorithm, can usually improve the performance of a single classifier. However, they usually require large storage space as well as relatively time-consuming predictions. Many approaches were developed to reduce the ensemble size and improve the classification performance by pruning the traditional bagging algorithms. In this article, we proposed a two-stage strategy to prune the traditional bagging algorithm by combining two simple approaches: accuracy-based pruning (AP) and distance-based pruning (DP). These two methods, as well as their two combinations, “AP+DP” and “DP+AP” as the two-stage pruning strategy, were all examined. Comparing with the single pruning methods, we found that the two-stage pruning methods can furthermore reduce the ensemble size and improve the classification. “AP+DP” method generally performs better than the “DP+AP” method when using four base classifiers: decision tree, Gaussian naive Bayes, K-nearest neighbor, and logistic regression. Moreover, as compared to the traditional bagging, the two-stage method “AP+DP” improved the classification accuracy by 0.88%, 4.06%, 1.26%, and 0.96%, respectively, averaged over 28 datasets under the four base classifiers. It was also observed that “AP+DP” outperformed other three existing algorithms Brag, Nice, and TB assessed on 8 common datasets. In summary, the proposed two-stage pruning methods are simple and promising approaches, which can both reduce the ensemble size and improve the classification accuracy
    • …
    corecore