30 research outputs found

    Intelligent and Efficient Ultra-Dense Heterogeneous Networks for 5G and Beyond

    Get PDF
    Ultra-dense heterogeneous network (HetNet), in which densified small cells overlaying the conventional macro-cells, is a promising technique for the fifth-generation (5G) mobile network. The dense and multi-tier network architecture is able to support the extensive data traffic and diverse quality of service (QoS) but meanwhile arises several challenges especially on the interference coordination and resource management. In this thesis, three novel network schemes are proposed to achieve intelligent and efficient operation based on the deep learning-enabled network awareness. Both optimization and deep learning methods are developed to achieve intelligent and efficient resource allocation in these proposed network schemes. To improve the cost and energy efficiency of ultra-dense HetNets, a hotspot prediction based virtual small cell (VSC) network is proposed. A VSC is formed only when the traffic volume and user density are extremely high. We leverage the feature extraction capabilities of deep learning techniques and exploit a long-short term memory (LSTM) neural network to predict potential hotspots and form VSC. Large-scale antenna array enabled hybrid beamforming is also adaptively adjusted for highly directional transmission to cover these VSCs. Within each VSC, one user equipment (UE) is selected as a cell head (CH), which collects the intra-cell traffic using the unlicensed band and relays the aggregated traffic to the macro-cell base station (MBS) in the licensed band. The inter-cell interference can thus be reduced, and the spectrum efficiency can be improved. Numerical results show that proposed VSCs can reduce 55%55\% power consumption in comparison with traditional small cells. In addition to the smart VSCs deployment, a novel multi-dimensional intelligent multiple access (MD-IMA) scheme is also proposed to achieve stringent and diverse QoS of emerging 5G applications with disparate resource constraints. Multiple access (MA) schemes in multi-dimensional resources are adaptively scheduled to accommodate dynamic QoS requirements and network states. The MD-IMA learns the integrated-quality-of-system-experience (I-QoSE) by monitoring and predicting QoS through the LSTM neural network. The resource allocation in the MD-IMA scheme is formulated as an optimization problem to maximize the I-QoSE as well as minimize the non-orthogonality (NO) in view of implementation constraints. In order to solve this problem, both model-based optimization algorithms and model-free deep reinforcement learning (DRL) approaches are utilized. Simulation results demonstrate that the achievable I-QoSE gain of MD-IMA over traditional MA is 15%15\% - 18%18\%. In the final part of the thesis, a Software-Defined Networking (SDN) enabled 5G-vehicle ad hoc networks (VANET) is designed to support the growing vehicle-generated data traffic. In this integrated architecture, to reduce the signaling overhead, vehicles are clustered under the coordination of SDN and one vehicle in each cluster is selected as a gateway to aggregate intra-cluster traffic. To ensure the capacity of the trunk-link between the gateway and macro base station, a Non-orthogonal Multiplexed Modulation (NOMM) scheme is proposed to split aggregated data stream into multi-layers and use sparse spreading code to partially superpose the modulated symbols on several resource blocks. The simulation results show that the energy efficiency performance of proposed NOMM is around 1.5-2 times than that of the typical orthogonal transmission scheme

    Radio resource management for V2X in cellular systems

    Get PDF
    The thesis focuses on the provision of cellular vehicle-to-everything (V2X) communications, which have attracted great interest for 5G due to the potential of improving traffic safety and enabling new services related to intelligent transportation systems. These types of services have strict requirements on reliability, access availability, and end-to-end (E2E) latency. V2X requires advanced network management techniques that must be developed based on the characteristics of the networks and traffic requirements. The integration of the Sidelink (SL), which enables the direct communication between vehicles (i.e., vehicle-to-vehicle (V2V)) without passing through the base station into cellular networks is a promising solution for enhancing the performance of V2X in cellular systems. In this thesis, we addressed some of the challenges arising from the integration of V2V communication in cellular systems and validated the potential of this technology by providing appropriate resource management solutions. Our main contributions have been in the context of radio access network slicing, mode selection, and radio resource allocation mechanisms. With regard to the first research direction that focuses on the RAN slicing management, a novel strategy based on offline Q-learning and softmax decision-making has been proposed as an enhanced solution to determine the adequate split of resources between a slice for eMBB communications and a slice for V2X. Then, starting from the outcome of the off-line Q-learning algorithm, a low-complexity heuristic strategy has been proposed to achieve further improvements in the use of resources. The proposed solution has been compared against proportional and fixed reference schemes. The extensive performance assessment have revealed the ability of the proposed algorithms to improve network performance compared to the reference schemes, especially in terms of resource utilization, throughput, latency and outage probability. Regarding the second research direction that focuses on the mode selection, two different mode selection solutions referred to as MSSB and MS-RBRS strategies have been proposed for V2V communication over a cellular network. The MSSB strategy decides when it is appropriate to use one or the other mode, i.e. sidelink or cellular, for the involved vehicles, taking into account the quality of the links between V2V users, the available resources, and the network traffic load situation. Moreover, the MS-RBRS strategy not only selects the appropriate mode of operation but also decides efficiently the amount of resources needed by V2V links in each mode and allows reusing RBs between different SL users while guaranteeing the minimum signal to interference requirements. The conducted simulations have revealed that the MS-RBRS and MSSB strategies are beneficial in terms of throughput, radio resource utilization, outage probability and latency under different offered loads comparing to the reference scheme. Last, we have focused on the resource allocation problem including jointly mode selection and radio resource scheduling. For the mode selection, a novel mode selection has been presented to decide when it is appropriate to select sidelink mode and use a distributed approach for radio resource allocation or cellular mode and use a centralized radio resource allocation. It takes into account three aspects: the quality of the links between V2V users, the available resources, and the latency. As for the radio resource allocation, the proposed approach includes a distributed radio resource allocation for sidelink mode and a centralized radio resource allocation for cellular mode. The proposed strategy supports dynamic assignments by allowing transmission over mini-slots. A simulation-based analysis has shown that the proposed strategies improved the network performance in terms of latency of V2V services, packet success rate and resource utilization under different network loads.La tesis se centra en la provisión de comunicaciones para vehículos sistemas celulares (V2X: Vehicle to Everything), que han atraído un gran interés en el contexto de 5G debido a su potencial de mejorar la seguridad del tráfico y habilitar nuevos servicios relacionados con los sistemas inteligentes de transporte. Estos tipos de servicios tienen requisitos estrictos en términos fiabilidad, disponibilidad de acceso y latencia de extremo a extremo (E2E). Para ello, V2X requiere técnicas avanzadas de gestión de red que deben desarrollarse en función de las características de las redes y los requisitos de tráfico. La integración del Sidelink (SL), que permite la comunicación directa entre vehículos (es decir, vehículo a vehículo (V2V)) sin pasar por la estación base de las redes celulares, es una solución prometedora para mejorar el rendimiento de V2X en el sistema celular. En esta tesis, abordamos algunos de los desafíos derivados de la integración de la comunicación V2V en los sistemas celulares y validamos el potencial de esta tecnología al proporcionar soluciones de gestión de recursos adecuadas. Nuestras principales contribuciones han sido en el contexto del denominado "slicing" de redes de acceso radio, la selección de modo y los mecanismos de asignación de recursos radio. Respecto a la primera dirección de investigación que se centra en la gestión del RAN slicing, se ha propuesto una estrategia novedosa basada en Q-learning y toma de decisiones softmax como una solución para determinar la división adecuada de recursos entre un slice para comunicaciones eMBB y un slice para V2X. Luego, a partir del resultado del algoritmo de Q-learning, se ha propuesto una estrategia heurística de baja complejidad para lograr mejoras adicionales en el uso de los recursos. La solución propuesta se ha comparado con esquemas de referencia proporcionales y fijos. La evaluación ha revelado la capacidad de los algoritmos propuestos para mejorar el rendimiento de la red en comparación con los esquemas de referencia, especialmente en términos de utilización de recursos, rendimiento, y latencia . Con respecto a la segunda dirección de investigación que se centra en la selección de modo, se han propuesto dos soluciones de diferentes llamadas estrategias MSSB y MS-RBRS para la comunicación V2V a través de una red celular. La estrategia MSSB decide cuándo es apropiado usar el modo SL o el modo celular, para los vehículos involucrados, teniendo en cuenta la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la situación de carga de tráfico de la red. Además, la estrategia MS-RBRS no solo selecciona el modo de operación apropiado, sino que también decide eficientemente la cantidad de recursos que los enlaces V2V necesitan en cada modo, y permite que los RB se reutilicen entre diferentes usuarios de SL al tiempo que garantiza requisitos mínimos de señal a interferencia. Se ha presentado un análisis basado en simulación para evaluar el desempeño de las estrategias propuestas. Finalmente, nos hemos centrado en el problema conjunto de la selección de modo y la asignación de recursos de radio. Para la selección de modo, se ha presentado una nueva estrategia para decidir cuándo es apropiado seleccionar el modo SL y usar un enfoque distribuido para la asignación de recursos de radio o el modo celular y usar la asignación de recursos de radio centralizada. Tiene en cuenta tres aspectos: la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la latencia. En términos de asignación de recursos de radio, el enfoque propuesto incluye una asignación de recursos de radio distribuida para el modo SL y una asignación de recursos de radio centralizada para el modo celular. La estrategia propuesta admite asignaciones dinámicas al permitir la transmisión a través de mini-slots. Los resultados muestran las mejoras en términos de latencia, tasa de recepción y la utilización de recursos bajo diferentes cargas de red.Postprint (published version

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    5G-NR radio planning for connected and autonomous vehicles services

    Get PDF
    Tese para obtenção do grau de Mestre em Engenharia Electrónica e de Telecomunicações com especialização em TelecomunicaçõesThe 5G network development is enabling many emerge technologies as connected and autonomous vehicles (CAV), promising a significant impact in the telecommunications industry in the future. In this thesis, was performed 5G radio planning by coverage and capacity, entirely when CAV applications are provided, requiring minimum and maximum user data rates according to different services categories from 5GMOBIX project. 5G air interface was explored joint to MIMO and modulation orders configurations, intending to analyse the different results in two diverse highways around Lisbon, for urban and rural propagation environments. Vehicles traffic model was simulated using real statistic numbers, aiming to compute more effective KPIs while the radio planning. The final number of sites calculated were compared regarding to each scenario simulated as well as the number of vehicles supported for each service category. The results showed that the cell ranges reached in DL were tens of kilometres, despite of some meters in UL for some network configurations. Also, the radio resources showed being enough when minimum user data rate is required, nevertheless when maximum user data rate is required, new cell and vehicle ranges recalculation were needed, reaching much higher number of sites due to the cell capacity limitation. The number of sites required in urban environment showed being the double when comparing to rural, due to the higher vehicles traffic.O desenvolvimento das redes móveis 5G está permitindo o surgimento de muitas outras tecnologias como veículos autónomos e conectados (CAV), prometendo impacto significativo na indústria das telecomunicações no futuro. Nesta tese, foi realizado planeamento rádio 5G por cobertura e capacidade, para aplicações CAV (e.g. Vehicle platooning, Advanced driving, Extend sensors, Remote driving and Vehicle QoS support), quando estes exigem mínima e máxima taxa de dados do utilizador de acordo com o projeto 5GMOBIX. Considerando que CAVs podem ter seis níveis de automação, de 0 à 5, de acordo com as tarefas que estes desempenhem, foram considerados veículos de nível 3. As comunicações V2X foram criadas para desenvolver mais segurança e eficiência no tráfego e economia no consumo de energia nas ruas e rodovias. Estas foram padronizadas em comunicações baseadas em WLAN e redes celulares. O primeiro apoia-se no mesmo protocolo do Wi-Fi IEEE 802.11p e o segundo (C-V2X) nos protocolos do 3GPP desenvolvidos para redes móveis como LTE, onde foi primeiramente definido e 5G, que é a base desta tese. A arquitetura 5G apresenta é padronizada pelo 3GPP e apresenta-se em duas formas, Standalone (SA) e Non-Standalone (NSA), onde o segundo apoia-se na estrutura core e radio do 4G mas tirando vantagem da interface rádio do 5G. Esta confuguração, permite que o 5G alcance o alto padrão de qualidade de serviço requisitado pelos estudos de caso que são: (i) enhanced mobile broadband (eMBB), (ii) ultra-reliable and low-latency communications (URLLC) and (iii) massive machine-type communications (mMTC). CAV se enquandra no segundo grupo. A interface rádio do 5G, herdou características do 4G e introduziu outras significativas. No 5G, há dois ranges de frequências. FR1 até 7125 MHz e FR2 de 24 à 52 MHz, ambos grupos com diferentes larguras de banda disponíveis. Para esta tese foi utilizado 3.5 GHz de frequência central, e largura de banda de 10 à 100 MHz. Esta banda, é definida pelo 3GPP como sendo TDD, ou seja, é necessário apenas um canal para que transmissor e receptor se comuniquem, e os símbolos OFDM são dispostos no domínio do tempo e configurados como DL, UL ou flexíveis dentro de cada time slot. O método de multiplexação é o mesmo utilizado no 4G, OFDM, que devido à orthogonalidade das subportadoras, permite que estas não interfiram entre si, e assim possam compartilhar o espectro rádio. Uma das principais características do 5G que difere do 4G, é a introdução das numerologias que referem-se ao espaçamento entre subportadoras. Estas, são diferentes, de acordo com o range de frequência a ser utilizado. Nesta tese, numerologias 0, 1 e 2 são aplicadas, ou seja, 15, 30 e 60 KHz de espaçamento. Considerando o formato de onda OFDM, e que um radioframe tem 10 ms e 14 símbolos, desta forma, é possível calcular o tempo de símbolo e número de resource blocks para as diferentes configurações de numerologia, largura de banda, e frequência utilizada, tornando o acesso radio mais flexível e possibilitando a aplicação de diferentes configurações para diferentes serviços. As modulações QPSK, 16QAM, 64QAM e 256QAM foram utilizadas neste trabalho, todas em UL e DL, uma vez que no 5G, são utilizadas diferentes modulações para diferente tipos de mensagens (e.g. dados, controle). MIMO também foi utilizado em matrizes de 2x2, 4x4 e 8x8, alterando o ganho de transmissão de acordo com o aumento do número de layers de antennas. O modelo desenvolvido para simular o planeamento rádio do 5G pra CAVs, foi baseado nas definições do 3GPP. O planeamento foi realizado em cobertura e capacidade, considerando os ambientes rural e urbano, em duas autoestradas do distrito de Lisboa em Portugal. Foram calculados KPIs relevantes e seus limites foram comparados, explorando todas as configurações aplicadas. No planeamento pela cobertura, foi utilizado o modelo do 3GPP para cálculo do PL de acordo com a distancia ao gNB, utilizando a componente aleatória fornecida de acordo com o ambiente de propagação de maneira a atingir valores mais realistas. Estes, resultaram em valores médios de 30 dB de diferença entre LOS e NLOS devido aos valores de desvio padrão definidos, sendo maiores em NLOS devidos às obstruções do sinal. Os valores médios do PL, foram utilizados para calcular a potência do signal recebido RSS, também com sua componente aleatória. Os valores mais baixos encontrados para RSS foram na borda da célula de -95, -113, -94 e -126 dBm em UL, e -71, -89, -70 e -102 dBm em DL, para RMa LOS, RMa NLOS, UMa LOS e UMa NLOS, respectivamente. Posteriormente, os valores de SNR para cada modulação foram definidos, utilizando a simulação de um canal AWGN hipotético que resultou em um gráfico de BER por EB/N0, onde BER foi definido como 1%, e os valores de SNR foram considerados como sendo os de Eb/N0 (i.e. 4, 8, 12 e 16). Estes foram valores de entrada para calcular a sensibilidade dos veículos e do gNB, que apresentaram aumento significativo com a largura de banda e diferença de 1 dB entre as numerologias em ambos ambientes. O PL maximo permitido MAPL, foi calculado considerando 99% de cobertura, onde os maiores valores foram em DL principalmente quando a modulação QPSK e MIMO 8x8 são utilizados. A distância máxima gNB-veículos foi também simulada, apresentando ser menor de acordo com o aumento da largura de banda, atingindo máximo de 23 km em ambiente rural LOS em DL, e mínimo de 72 m em ambiente urbano para NLOS em UL. A distância entre sites foi calculada em todos os cenários, utilizando a máxima distância gNB-veículos resultando em máximo de 40 km e mínima de 12 km para ambiente rural e LOS para DL e UL respectivamente, sendo que 1/3 dessa distância é atingida para largura de banda de 100 MHz. O número final de sites necessários para cobrir a área simulada de 5 km para largura de banda de 100 MHz resultou em 13 à 25 sites em ambiente rural e 20 á 70 sites em ambiente urbano. De acordo com as configurações utilizadas para o planeamento pela cobertura, foi também simulado o número máximo de veículos suportado por célula de acordo com o serviço. O planeamento pela capacidade, baseou-se na modelagem realista do tráfego na hora de ponta em duas autoestradas de Lisboa, a comparação do tráfego de dados exigido dos veículos com a capacidade da rede e destacados os pontos em que a rede é limitada pela cobertura e pela capacidade, calculando também KPIs relevantes para a análise. O resultado da modelagem de tráfego encontrou 23 veículos por km em ambiente urbano e 9 veículos por km em ambiente rural. Sabendo a taxa de dados por serviço do projecto 5GMOBIX, e aplicando percentagem à esses serviços de acordo com uma presumida penetração, atingiu-se taxa de dados total mínima e máxima requerida por km de autoestrada de acordo com o ambiente de propagação, resultando para ambiente urbano mínimo de 108 Mbps e máxima de 2.82 Gbps. E para ambiente rural mínima de 42 Mbps e máxima de 1.1 Gbps. Simulando a capacidade da rede esta mostrou-se ser maior consoante maior a largura de banda principalmente com a utilização da modulação de 256QAM. Posteriormente, a carga de tráfego foi simulada de acordo com a taxa de dados total mínima e máxima requerida por km de autoestrada multiplicada pela máxima distância gNB-veículos calculada durante o planeamento pela cobertura. A carga de tráfego apresentou-se ser maior quanto maior o raio de célula ou distância em UL, porém para ambiente rural LOS DL este apresentou-se ter menor carga de tráfego do que ambiente urbano LOS DL devido ao menor número de veículos. Racio de célula foi aplicado comparando a carga de tráfego com a capacidade da rede, com o intuito de indicar os pontos em que o planeamento é limitado pela cobertura ou pela capacidade e assim recalcular a máxima distância gNB-veículos. Assim, novo número de sites foi simulado após análise das limitações das células, onde resultados mostram que para 100 MHz de largura de banda e mínima taxa de dados exigida, a rede apresenta-se ser apenas limitada pela cobertura e ter condições de prover recursos rádio para todos os veículos, mas quando máxima taxa de dados é exigida quase todos os cenário são limitados pela capacidade devido às longas distâncias, principalmente em DL e para modulações mais baixas. Apenas MIMO 4x4 256QAM e MIMO 8x8 64QAM e 256QAM são limitados pela cobertura.info:eu-repo/semantics/publishedVersio

    Técnicas de gestão de feixe de onda para sistemas Massive MIMO nas redes 5G NR

    Get PDF
    The use of Millimeter wave (mmWave) spectrum frequencies is seen as a key enabler technology for the future wireless communication systems to overcome the bandwidth shortage of the sub 6GHz microwave spectrum band, enabling high speed data transmissions in the 5G/6G systems. Nevertheless, mmWave propagation characteristics are associated to significant free-path losses and many more attenuations that become even more harsher as the frequency increases, rendering the communication challenging at this frequencies. To overcome these distinct disadvantages, multiple antenna arrays are employed to allow beamforming techniques for the transmission of narrower concentrated beams in more precise directions and less interference levels between them, consequently improving the link budget. Thus, to constantly assure that the communication with each device is done using the beam pair that allows the best possible connectivity, a set of Beam Management control procedures is necessary to assure an efficient beamformed connection establishment and its continuous maintenance between the device and the network. This dissertation will address the description of the Initial Beam Establishment (IBE) BM procedure, focusing the selection of the most suitable transmit-receive beam pair available after completed beam sweeping techniques to measure the different power levels of the received signal. The main goal is to design a new 3GPP-standard compliant beam pair selection algorithm based on SSS angle estimation (BSAE), that makes use of multiple Synchronization Signal Blocks (SSBs) to maximize the Reference Signal Received Power (RSRP) value at the receiver, through the selected beam pair. This optimization is done using the Secondary Synchronization Signals (SSSs) present in each SSB to perform channel estimation in the digital domain (comprising the effects of the analog processing). Afterwards, the combination of those estimations were used to perform the equivalent channel propagation matrix estimation without the analog processing effects. Finally, through the channel propagation matrix, the angle that maximizes the RSRP was determined to compute the most suitable beam through the aggregated response vector. The obtained results show that the proposed algorithm achieves better performance levels compared to a conventional beam pair selection algorithm. Furthermore, a comparison with an optimal case is also done, i.e., the situation where the channel is known, and the optimal beam pair angle can be determined. Therefore, the similar performance results compared to the optimal case indicates that the proposed algorithm is interesting for practical 5G mmWave mMIMO implementations, according to 3GPP-compliant standards.O uso de frequências na banda das ondas milimétricas é visto como uma tecnologia chave para os futuros sistemas de comunicação móveis, tendo em vista a ultrapassar o problema da escassez de banda a sub-6 GHz, e por permitir as elevadas taxas de dados requeridas para sistemas 5G/6G. Contudo, a propagação deste tipo de ondas está associado a perdas acentuadas em espaço livre e várias atenuações que se tornam cada vez mais significativas com o aumento do valor da frequência, impondo obstáculos à comunicação. Para ultrapassar estas adversidades, agregados constituídos por múltiplos elementos de antena são implementados por forma a permitir técnicas de formação de feixe e possibilitar a transmissão de feixes mais estreitos e altamente direcionais, diminuindo os níveis de interferência e melhorando consequentemente o link budget. Deste modo, para assegurar constantemente que a comunicação efetuada em cada dispositivo ocorre utilizando o conjunto de feixes que proporciona o melhor nível de conectividade, é então necessário um conjunto de procedimentos de controlo de gestão de feixe, assegurando um estabelecimento eficiente da comunicação e a sua contínua manutenção entre um dispositivo e a rede. Esta dissertação descreve o procedimento de gestão de feixe conhecido como estabelecimento inicial de feixe, focando o processo de seleção do melhor par de feixe de transmissão-receção disponível após o uso de técnicas de varrimento de feixe por fim a efetuar medições dos diferentes níveis de potência do sinal recebido. O principal objetivo passa pela conceção de um novo algoritmo de estabelecimento de par de feixes baseado em estimações de ângulo (BSAE), que explora o uso de múltiplos SSBs definidos pelo 3GPP, por forma a maximizar o RSRP no recetor, através do feixe selecionado. Esta otimização é feita usando os sinais de sincronização secundários (SSSs) presentes em cada SSB para efetuar uma estimação de canal no domínio digital (que contém o efeito do processamento analógico). Depois, combinando essas estimações, foi feita uma estimação da matriz do canal de propagação, sem o efeito desse processamento analógico. Finalmente, através da matriz do canal de propagação, foi determinado o ângulo que maximiza o RSRP, e calculado o feixe através do vetor de resposta do agregado. Os resultados obtidos demonstram que o algoritmo proposto atinge melhor desempenho quando comparado com o algoritmo convencional de seleção de par de feixes. Foi feita ainda uma comparação com o caso ótimo, isto é, com o caso em que se conhece completamente o canal e se obtém um ângulo ótimo. Os resultados obtidos pelo algoritmo proposto foram muito próximos do caso ótimo, pelo que é bastante interessante para sistemas práticos 5G mmWave mMIMO, que estejam de acordo com o padrão 3GPP.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios

    Radio resource allocation for overlay D2D-based vehicular communications in future wireless networks

    Get PDF
    Mobilfunknetze der nächsten Generation ermöglichen einen weitverbreiteten Einsatz von Device-to-Device Kommunikation, der direkten Kommunikation zwischen zellularen Endgeräten. Für viele Anwendungsfälle zur direkten Kommunikation zwischen Endgeräten sind eine deterministische Latenz und die hohe Zuverlässigkeit von zentraler Bedeutung. Dienste zur direkten Kommunikation (D2D) für in der Nähe befindliche Endgeräte sind vielversprechend die hohen Anforderungen an Latenz und Zuverlässigkeit für zukünftige vertikale Anwendungen zu erfüllen. Eine der herausragenden vertikalen Anwendungen ist die Fahrzeugkommunikation, bei der die Fahrzeuge sicherheitskritische Meldungen direkt über D2D-Kommunikation austauschen, die dadurch zur Reduktion von Verkehrsunfällen und gleichzeitig von Todesfällen im Straßenverkehrt beiträgt. Neue Techniken zur effizienteren Zuweisung von Funkressourcen in der D2D-Kommunikation haben in letzter Zeit in Industrie und Wissenschaft große Aufmerksamkeit erlangt. Zusätzlich zur Allokation von Ressourcen, wird die Energieeffizienz zunehmend wichtiger, die normalerweise im Zusammenhang mit der Ressourcenallokation behandelt wird. Diese Dissertation untersucht verschiedener Ansätze der Funkressourcenzuweisung und Energieeffizienztechniken in der LTE und NR V2X Kommunikation. Im Folgenden beschreiben wir kurz die Kernideen der Dissertation. Meist zeichnen sich D2D-Anwendungen durch ein relativ geringes Datenvolumen aus, die über Funkressourcen übertragen werden. In LTE können diese Funkressourcen aufgrund der groben Granularität für die Ressourcenzuweisung nicht effizient genutzt werden. Insbesondere beim semi-persistenten Scheduling, bei dem eine Funkressource über einen längeren Zeitraum im Overlay D2D festgelegt wird, sind die Funkressourcen für solche Anwendungen nicht ausgelastet. Um dieses Problem zu lösen, wird eine hierarchische Form für das Management der Funkressourcen, ein sogenanntes Subgranting-Schema, vorgeschlagen. Dabei kann ein nahegelegener zellularer Nutzer, der sogenannte begünstigte Nutzer, ungenutzten Funkressourcen, die durch Subgranting-Signalisierung angezeigt werden, wiederzuverwenden. Das vorgeschlagene Schema wird bewertet und mit "shortening TTI", einen Schema mit reduzierten Sendezeitintervallen, in Bezug auf den Zellendurchsatz verglichen. Als nächster Schritt wird untersucht, wie der begünstigten Benutzer ausgewählt werden kann und als Maximierungsproblem des Zellendurchsatzes im Uplink unter Berücksichtigung von Zuverlässigkeits- und Latenzanforderungen dargestellt. Dafür wird ein heuristischer zentralisierter, d.h. dedizierter Sub-Granting-Radio-Ressource DSGRR-Algorithmus vorgeschlagen. Die Simulationsergebnisse und die Analyse ergeben in einem Szenario mit stationären Nutzern eine Erhöhung des Zelldurchsatzes bei dem Einsatz des vorgeschlagenen DSGRR-Algorithmus im Vergleich zu einer zufälligen Auswahl von Nutzern. Zusätzlich wird das Problem der Auswahl des begünstigten Nutzers in einem dynamischen Szenario untersucht, in dem sich alle Nutzer bewegen. Wir bewerten den durch das Sub-Granting durch die Mobilität entstandenen Signalisierungs-Overhead im DSGRR. Anschließend wird ein verteilter Heuristik-Algorithmus (OSGRR) vorgeschlagen und sowohl mit den Ergebnissen des DSGRR-Algorithmus als auch mit den Ergebnissen ohne Sub-Granting verglichen. Die Simulationsergebnisse zeigen einen verbesserten Zellendurchsatz für den OSGRR im Vergleich zu den anderen Algorithmen. Außerdem ist zu beobachten, dass der durch den OSGRR entstehende Overhead geringer ist als der durch den DSGRR, während der erreichte Zellendurchsatz nahe am maximal erreichbaren Uplink-Zellendurchsatz liegt. Zusätzlich wird die Ressourcenallokation im Zusammenhang mit der Energieeffizienz bei autonomer Ressourcenauswahl in New Radio (NR) Mode 2 untersucht. Die autonome Auswahl der Ressourcen wird als Verhältnis von Summenrate und Energieverbrauch formuliert. Das Ziel ist den Stromverbrauch der akkubetriebenen Endgeräte unter Berücksichtigung der geforderten Zuverlässigkeit und Latenz zu minimieren. Der heuristische Algorithmus "Density of Traffic-based Resource Allocation (DeTRA)" wird als Lösung vorgeschlagen. Bei dem vorgeschlagenen Algorithmus wird der Ressourcenpool in Abhängigkeit von der Verkehrsdichte pro Verkehrsart aufgeteilt. Die zufällige Auswahl erfolgt zwingend auf dem dedizierten Ressourcenpool beim Eintreffen aperiodischer Daten. Die Simulationsergebnisse zeigen, dass der vorgeschlagene Algorithmus die gleichen Ergebnisse für die Paketempfangsrate (PRR) erreicht, wie der sensing-basierte Algorithmus. Zusätzlich wird der Stromverbrauch des Endgeräts reduziert und damit die Energieeffizienz durch die Anwendung des DeTRA-Algorithmus verbessert. In dieser Arbeit werden Techniken zur Allokation von Funkressourcen in der LTE-basierten D2D-Kommunikation erforscht und eingesetzt, mit dem Ziel Funkressourcen effizienter zu nutzen. Darüber hinaus ist der in dieser Arbeit vorgestellte Ansatz eine Basis für zukünftige Untersuchungen, wie akkubasierte Endgeräte mit minimalem Stromverbrauch in der NR-V2X-Kommunikation Funkressourcen optimal auswählen können.Next-generation cellular networks are envisioned to enable widely Device-to-Device (D2D) communication. For many applications in the D2D domain, deterministic communication latency and high reliability are of exceptionally high importance. The proximity service provided by D2D communication is a promising feature that can fulfil the reliability and latency requirements of emerging vertical applications. One of the prominent vertical applications is vehicular communication, in which the vehicles disseminate safety messages directly through D2D communication, resulting in the fatality rate reduction due to a possible collision. Radio resource allocation techniques in D2D communication have recently gained much attention in industry and academia, through which valuable radio resources are allocated more efficiently. In addition to the resource allocation techniques, energy sustainability is highly important and is usually considered in conjunction with the resource allocation approach. This dissertation is dedicated to studying different avenues of the radio resource allocation and energy efficiency techniques in Long Term Evolution (LTE) and New Radio (NR) Vehicle-to-Everythings (V2X) communications. In the following, we briefly describe the core ideas in this study. Mostly, the D2D applications are characterized by relatively small traffic payload size, and in LTE, due to coarse granularity of the subframe, the radio resources can not be utilized efficiently. Particularly, in the case of semi-persistent scheduling when a radio resource is scheduled for a longer time in the overlay D2D, the radio resources are underutilized for such applications. To address this problem, a hierarchical radio resource management scheme, i.e., a sub-granting scheme, is proposed by which nearby cellular users, i.e., beneficiary users, are allowed to reuse the unused radio resource indicated by sub-granting signaling. The proposed scheme is evaluated and compared with shortening Transmission Time Interval (TTI) schemes in terms of cell throughput. Then, the beneficiary user selection problem is investigated and is cast as a maximization problem of uplink cell throughput subject to reliability and latency requirements. A heuristic centralized, i.e., dedicated sub-granting radio resource Dedicated Sub-Granting Radio Resource (DSGRR) algorithm is proposed to address the original beneficiary user selection problem. The simulation results and analysis show the superiority of the proposed DSGRR algorithm over the random beneficiary user selection algorithm in terms of the cell throughput in a scenario with stationary users. Further, the beneficiary user selection problem is investigated in a scenario where all users are moving in a dynamic environment. We evaluate the sub-granting signaling overhead due to mobility in the DSGRR, and then a distributed heuristics algorithm, i.e., Open Sub-Granting Radio Resource (OSGRR), is proposed and compared with the DSGRR algorithm and no sub-granting case. Simulation results show improved cell throughput for the OSGRR compared with other algorithms. Besides, it is observed that the overhead incurred by the OSGRR is less than the DSGRR while the achieved cell throughput is yet close to the maximum achievable uplink cell throughput. Also, joint resource allocation and energy efficiency in autonomous resource selection in NR, i.e. Mode 2, is examined. The autonomous resource selection is formulated as a ratio of sum-rate and energy consumption. The objective is to minimize the energy efficiency of the power-saving users subject to reliability and latency requirements. A heuristic algorithm, density of traffic-based resource allocation (DeTRA), is proposed to solve the problem. The proposed algorithm splits the resource pool based on the traffic density per traffic type. The random selection is then mandated to be performed on the dedicated resource pool upon arrival of the aperiodic traffic is triggered. The simulation results show that the proposed algorithm achieves the same packet reception ratio (PRR) value as the sensing-based algorithm. In addition, per-user power consumption is reduced, and consequently, the energy efficiency is improved by applying the DeTRA algorithm. The research in this study leverages radio resource allocation techniques in LTE based D2D communications to be utilized radio resources more efficiently. In addition, the conducted research paves a way to study further how the power-saving users would optimally select the radio resources with minimum energy consumption in NR V2X communications

    Resource allocation in non-orthogonal multiple access technologies for 5G networks and beyond.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The increasing demand of mobile and device connectivity poses challenging requirements for 5G wireless communications, such as high energy- and spectral-efficiency and low latency. This necessitates a shift from orthogonal multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques, namely, power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). The basic idea behind NOMA schemes is to co-multiplex different users on the same resource elements (time slot, OFDMA sub-carrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter while permitting controllable interference, and their successful multi-user detection (MUD) at the receiver albeit, increased computational complexity. In this work, an analysis on the performance of the existing NOMA schemes is carried out. Furthermore, we investigate the feasibility of a proposed uplink hybrid-NOMA scheme namely power domain sparse code multiple access (PD-SCMA) that integrates PD-NOMA and CD-NOMA based sparse code multiple access (SCMA) on heterogeneous networks (HetNets). Such hybrid schemes come with resource allocation (RA) challenges namely; codebook allocation, user pairing and power allocation. Therefore, hybrid RA schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook assignment (CA), opportunistic macro cell user equipment (MUE)- small cell user equipment (SUE) pairing (OMSP) for user pairing (UP), and a QoS-aware power allocation (QAPA) for power allocation (PA) are developed for an energy efficient (EE) system. The performance of the RA schemes is analyzed alongside an analytical RA optimization algorithm. Through numerical results, the proposed schemes show significant improvements in the EE of the small cells in comparison with the prevalent schemes. Additionally, there is significant sum rate performance improvement over the conventional SCMA and PD-NOMA. Secondly, we investigate the multiplexing capacity of the hybrid PD-SCMA scheme in HetNets. Particularly, we investigate and derive closed-form solutions for codebook capacity, MUE multiplexing and power capacity bounds. The system’s performance results into low outage when the system’s point of operation is within the multiplexing bounds. To alleviate the RA challenges of such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM) based RA schemes are proposed. The results show significant capacity gain with DPR-RA in comparison with conventional RA schemes. Lastly, we investigate the feasibility of integrating the hybrid PD-SCMA with multiple-input multipleoutput (MIMO) technique namely, M-PD-SCMA. The attention to M-PD-SCMA resides in the need of lower number of antennas while preserving the system capacity thanks to the overload in PDSCMA. To enhance spectral efficiency and error performance we propose spatial multiplexing at the transmitter and a low complex joint MUD scheme based on successive interference cancellation (SIC) and expectation propagation algorithm (EPA) at the receiver are proposed. Numerical results exhibit performance benchmark with PD-SCMA schemes and the proposed receiver achieves guaranteed bit error rate (BER) performance with a bounded increase in the number of transmit and receive antennas. Thus, the feasibility of an M-PD-SCMA system is validated
    corecore