12,246 research outputs found

    Aggregated fuzzy answer set programming

    Get PDF
    Fuzzy Answer Set programming (FASP) is an extension of answer set programming (ASP), based on fuzzy logic. It allows to encode continuous optimization problems in the same concise manner as ASP allows to model combinatorial problems. As a result of its inherent continuity, rules in FASP may be satisfied or violated to certain degrees. Rather than insisting that all rules are fully satisfied, we may only require that they are satisfied partially, to the best extent possible. However, most approaches that feature partial rule satisfaction limit themselves to attaching predefined weights to rules, which is not sufficiently flexible for most real-life applications. In this paper, we develop an alternative, based on aggregator functions that specify which (combination of) rules are most important to satisfy. We extend upon previous work by allowing aggregator expressions to define partially ordered preferences, and by the use of a fixpoint semantics

    Weighted Constraints in Fuzzy Optimization

    Get PDF
    Many practical optimization problems are characterized by someflexibility in the problem constraints, where this flexibility canbe exploited for additional trade-off between improving theobjective function and satisfying the constraints. Especially indecision making, this type of flexibility could lead to workablesolutions, where the goals and the constraints specified bydifferent parties involved in the decision making are traded offagainst one another and satisfied to various degrees. Fuzzy setshave proven to be a suitable representation for modeling this typeof soft constraints. Conventionally, the fuzzy optimizationproblem in such a setting is defined as the simultaneoussatisfaction of the constraints and the goals. No additionaldistinction is assumed to exist amongst the constraints and thegoals. This report proposes an extension of this model forsatisfying the problem constraints and the goals, where preferencefor different constraints and goals can be specified by thedecision-maker. The difference in the preference for theconstraints is represented by a set of associated weight factors,which influence the nature of trade-off between improving theoptimization objectives and satisfying various constraints.Simultaneous weighted satisfaction of various criteria is modeledby using the recently proposed weighted extensions of(Archimedean) fuzzy t-norms. The weighted satisfaction of theproblem constraints and goals are demonstrated by using a simplefuzzy linear programming problem. The framework, however, is moregeneral, and it can also be applied to fuzzy mathematicalprogramming problems and multi-objective fuzzy optimization.wiskundige programmering;fuzzy sets;optimalisatie

    Visual analysis of sensor logs in smart spaces: Activities vs. situations

    Get PDF
    Models of human habits in smart spaces can be expressed by using a multitude of representations whose readability influences the possibility of being validated by human experts. Our research is focused on developing a visual analysis pipeline (service) that allows, starting from the sensor log of a smart space, to graphically visualize human habits. The basic assumption is to apply techniques borrowed from the area of business process automation and mining on a version of the sensor log preprocessed in order to translate raw sensor measurements into human actions. The proposed pipeline is employed to automatically extract models to be reused for ambient intelligence. In this paper, we present an user evaluation aimed at demonstrating the effectiveness of the approach, by comparing it wrt. a relevant state-of-the-art visual tool, namely SITUVIS

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP
    corecore