53,592 research outputs found

    A production planning system for plastic footwear in a seasonal market

    Get PDF
    Modern injection-moulding machinery which produces several, pairs of plastic footwear at a time brought increased production planning problems to a factory. The demand for its footwear is seasonal but the company's manning policy keeps a fairly constant production level thus determining the aggregate stock. Production planning must therefore be done within the limitations of a specified total stock. The thesis proposes a new production planning system with four subsystems. These are sales forecasting, resource planning, and two levels of production scheduling: (a) aggregate decisions concerning the 'manufacturing group' (group of products) to be produced in each machine each week, and (b) detailed decisions concerning the products within a manufacturing group to be scheduled into each mould-place. The detailed scheduling is least dependent on improvements elsewhere so the sub-systems were tackled in reverse order. The thesis concentrates on the production scheduling sub-systems which will provide most. of the benefits. The aggregate scheduling solution depends principally on the aggregate stocks of each manufacturing group and their division into 'safety stocks' (to prevent shortages) and 'freestocks' (to permit batch production). The problem is too complex for exact solution but a good heuristic solution, which has yet to be implemented, is provided by minimising graphically immediate plus expected future costs. The detailed problem splits into determining the optimal safety stocks and batch quantities given the appropriate aggregate stocks. It.is found that the optimal safety stocks are proportional to the demand. The ideal batch quantities are based on a modified, formula for the Economic Batch Quantity and the product schedule is created week by week using a priority system which schedules to minimise expected future costs. This algorithm performs almost optimally. The detailed scheduling solution was implemented and achieved the target savings for the whole project in favourable circumstances. Future plans include full implementation

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    A novel crossover operator for genetic algorithm: Stas crossover

    Get PDF
    The genetic algorithm (GA) is a natural selection-inspired optimization algorithm. It is a population-based search algorithm that utilizes the concept of survival of the fittest. This study creates a new crossover operator called “Stas Crossover” that is a combination of four crossover operators, including Single point crossover, Two points crossover, Arithmetic crossover, and Scattered crossover, and then presents the performance of this crossover operator. The area size and probability of Stas crossover can be adjusted.GA is used to find the optimal solution for this multi-product and multi-period aggregate production planning (APP) problem, which was used to test the algorithm, which provides optimal levels of inventory, backorders, overtime and regular production rates, and other controllable variables. According to the findings of this study, the benefit of stable crossover is that it allows for more variety in the way offspring are created and increases the opportunity for offspring to obtain good genetic information directly

    A Decision Support System for Ship Maintenance Capacity Planning

    Get PDF
    In this paper, the basic framework and algorithms of a decision support system are discussed, which enhance process and capacity planning at a large repair shop. The research is strongly motivated by experiences in a project carried out at a dockyard, which performs repair, overhaul and modification programs for various classes of navy ships. We outline the basic requirements placed upon order acceptance, process planning and capacity scheduling for large maintenance projects. In subsequent sections a number of procedures and algorithms to deal with these requirements, in particular a procedure for workload-based capacity planning, a database system to support process planning are developed, as well as a resource-constrained project scheduling system to support work planning at a more detailed level. The system has been designed to support decision making at the Navy Dockyard in particular, however, we believe that, due to its generic structure, it is applicable to a wide range of project-based manufacturing and maintenance environments

    Differential evolution to solve the lot size problem.

    Get PDF
    An Advanced Resource Planning model is presented to support optimal lot size decisions for performance improvement of a production system in terms of either delivery time or setup related costs. Based on a queueing network, a model is developed for a mix of multiple products following their own specific sequence of operations on one or more resources, while taking into account various sources of uncertainty, both in demand as well as in production characteristics. In addition, the model includes the impact of parallel servers and different time schedules in a multi-period planning setting. The corrupting influence of variabilities from rework and breakdown is explicitly modeled. As a major result, the differential evolution algorithm is able to find the optimal lead time as a function of the lot size. In this way, we add a conclusion on the debate on the convexity between lot size and lead time in a complex production environment. We show that differential evolution outperforms a steepest descent method in the search for the global optimal lot size. For problems of realistic size, we propose appropriate control parameters for the differential evolution in order to make its search process more efficient.Production planning; Lot sizing; Queueing networks; Differential evolution;
    • …
    corecore