22,524 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Variations on the Theme of Conning in Mathematical Economics

    Get PDF
    The mathematization of economics is almost exclusively in terms of the mathematics of real analysis which, in turn, is founded on set theory (and the axiom of choice) and orthodox mathematical logic. In this paper I try to point out that this kind of mathematization is replete with economic infelicities. The attempt to extract these infelicities is in terms of three main examples: dynamics, policy and rational expectations and learning. The focus is on the role and reliance on standard xed point theorems in orthodox mathematical economics

    Information and the reconstruction of quantum physics

    Full text link
    The reconstruction of quantum physics has been connected with the interpretation of the quantum formalism, and has continued to be so with the recent deeper consideration of the relation of information to quantum states and processes. This recent form of reconstruction has mainly involved conceiving quantum theory on the basis of informational principles, providing new perspectives on physical correlations and entanglement that can be used to encode information. By contrast to the traditional, interpretational approach to the foundations of quantum mechanics, which attempts directly to establish the meaning of the elements of the theory and often touches on metaphysical issues, the newer, more purely reconstructive approach sometimes defers this task, focusing instead on the mathematical derivation of the theoretical apparatus from simple principles or axioms. In its most pure form, this sort of theory reconstruction is fundamentally the mathematical derivation of the elements of theory from explicitly presented, often operational principles involving a minimum of extra‐mathematical content. Here, a representative series of specifically information‐based treatments—from partial reconstructions that make connections with information to rigorous axiomatizations, including those involving the theories of generalized probability and abstract systems—is reviewed.Accepted manuscrip

    Verse: A Python library for reasoning about multi-agent hybrid system scenarios

    Full text link
    We present the Verse library with the aim of making hybrid system verification more usable for multi-agent scenarios. In Verse, decision making agents move in a map and interact with each other through sensors. The decision logic for each agent is written in a subset of Python and the continuous dynamics is given by a black-box simulator. Multiple agents can be instantiated and they can be ported to different maps for creating scenarios. Verse provides functions for simulating and verifying such scenarios using existing reachability analysis algorithms. We illustrate several capabilities and use cases of the library with heterogeneous agents, incremental verification, different sensor models, and the flexibility of plugging in different subroutines for post computations.Comment: 26 pages, 16 figure
    • 

    corecore