16,275 research outputs found

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the studentā€™s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the studentā€™s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Designing intelligent computerā€based simulations: A pragmatic approach

    Get PDF
    This paper examines the design of intelligent multimedia simulations. A case study is presented which uses an approach based in part on intelligent tutoring system design to integrate formative assessment into the learning of clinical decisionā€making skills for nursing students. The approach advocated uses a modular design with an integrated intelligent agent within a multimedia simulation. The application was created using an objectā€orientated programming language for the multimedia interface (Delphi) and a logicā€based interpreted language (Prolog) to create an expert assessment system. Domain knowledge is also encoded in a Windows help file reducing some of the complexity of the expert system. This approach offers a method for simplifying the production of an intelligent simulation system. The problems developing intelligent tutoring systems are examined and an argument is made for a practical approach to developing intelligent multimedia simulation systems

    A review on massive e-learning (MOOC) design, delivery and assessment

    Get PDF
    MOOCs or Massive Online Open Courses based on Open Educational Resources (OER) might be one of the most versatile ways to offer access to quality education, especially for those residing in far or disadvantaged areas. This article analyzes the state of the art on MOOCs, exploring open research questions and setting interesting topics and goals for further research. Finally, it proposes a framework that includes the use of software agents with the aim to improve and personalize management, delivery, efficiency and evaluation of massive online courses on an individual level basis.Peer ReviewedPostprint (author's final draft

    Adaptive Intelligent Tutoring System for learning Computer Theory

    Get PDF
    In this paper, we present an intelligent tutoring system developed to help students in learning Computer Theory. The Intelligent tutoring system was built using ITSB authoring tool. The system helps students to learn finite automata, pushdown automata, Turing machines and examines the relationship between these automata and formal languages, deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and complexity. During the process the intelligent tutoring system gives assistance and feedback of many types in an intelligent manner according to the behavior of the student. An evaluation of the intelligent tutoring system has revealed reasonably acceptable results in terms of its usability and learning abilities are concerned

    Agents, Believability and Embodiment in Advanced Learning Environments

    Get PDF
    On the World Wide Web we see a growing number of general HCI interfaces, interfaces to educational or entertainment systems, interfaces to professional environments, etc., where an animated face, a cartoon character or a human-like virtual agent has the task to assist the user, to engage the user into a conversation or to educate the user. What can be said say about the effects a human-like agent has on a student's performance? We discuss agents, their intelligence, embodiment and interaction modalities. In particular, we introduce viewpoints and questions about roles embodied agents can play in educational environment

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstractā€” this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game playerā€™s perception; (ii) the game designersā€™ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Genisa: A web-based interactive learning environment for teaching simulation modelling

    Get PDF
    Intelligent Tutoring Systems (ITS) provide students with adaptive instruction and can facilitate the acquisition of problem solving skills in an interactive environment. This paper discusses the role of pedagogical strategies that have been implemented to facilitate the development of simulation modelling knowledge. The learning environment integrates case-based reasoning with interactive tools to guide tutorial remediation. The evaluation of the system shows that the model for pedagogical activities is a useful method for providing efficient simulation modelling instruction
    • ā€¦
    corecore