209 research outputs found

    Agent-based real-time assembly line management for wireless job shop environment

    Get PDF
    Recent developments in wireless technologies have created opportunities for developing next-generation manufacturing systems with real-time traceability, visibility and interoperability in shop floor planning, execution and control. This paper discusses how to deploy wireless and intelligent technologies to convert physical objects in manufacturing systems into smart objects to introduce and improve the interoperability and visibility between them and thus with manufacturing decision support systems. A reference architecture for wireless manufacturing (WM) is proposed where three types of smart objects are identified. At the same time, the concept of smart object agent (SOA) is presented and the corresponding framework of smart objects management system (SOMS) is constructed. Under this framework and the concept of SOA, a SOA-based WM environment is studied and demonstrated using a near real-life simplified product assembly line for the collection and synchronization of the real-time field data from manufacturing workshops. © 2010 IEEE.published_or_final_versionThe IEEE International Conference on Mechatronics and Automation (ICMA) 2010, Xi'an, China, 4-7 August 2010. In Proceedings of the IEEE International Conference on Mechatronics and Automation, 2010, p. 2013-201

    Literature review on the ‘Smart Factory’ concept using bibliometric tools

    Get PDF
    The objective of this paper is to depict a landscape of the scientific literature on the concept of the ‘Smart Factory’, which in recent years is gaining more and more attention from academics and practitioners because of significant innovations in the production systems within the manufacturing sector. To achieve this objective, a dynamic methodology called "Systematic Literature Network Analysis (SLNA)" has been applied. This methodology combines the Systematic Literature Review approach with the analysis of bibliographic networks. The adopted methodology allows complementing traditional content-based literature reviews by extracting quantitative information from bibliographic networks to detect emerging topics, and by revealing the dynamic evolution of the scientific production of a discipline. This dynamic analysis allowed highlighting research directions and critical areas for the development of the "Smart Factory". At the same time, it offers insights on the fields on which companies, associations, politicians and technology providers need to focus in order to allow a real transition towards the implementation of large-scale Smart Factory

    Smart objects embedded production and quality management functions

    Get PDF
    In this paper, smart objects embedded production and quality management functions are proposed, to promote accurately support decision-making processes, from the shop floor level up to higher decision-making levels. The proposed functions contribute for different kind of problems solving in production and quality management, such as production planning and control, scheduling, factory supervision, real-time data acquisition and processing, and real-time decision making. The web access at different middleware devices and tools, at different decision levels, along with the use of integrated algorithms and tools, embedded in smart objects, promotes conditions for better decision-making for optimized use of knowledge and resources in production systems. The relevance of the proposed smart objects embedded production and quality management functions has been validated positively in a manufacturing company.The authors wish to acknowledge the support of the Fundação para a Ciência e Tecnologia (FCT), Portugal, through the grants: “Projeto Estratégico – UI 252 – 2011–2012” reference PEstOE/EME/UI0252/2011, and “Ph.D. Scholarship Grant” reference SFRH/BD/85672/2012.info:eu-repo/semantics/publishedVersio

    Radio Frequency Identification (RFID) based wireless manufacturing systems, a review

    Get PDF
    Radio frequency identification (RFID) is one of the most promising technological innovations in order to track and trace products as well as material flow in manufacturing systems. High Frequency (HF) and Ultra High Frequency (UHF) RFID systems can track a wide range of products in the part production process via radio waves with level of accuracy and reliability.   As a result, quality and transparency of data across the supply chain can be accurately obtained in order to decrease time and cost of part production. Also, process planning and part production scheduling can be modified using the advanced RFID systems in part manufacturing process. Moreover, to decrease the cost of produced parts, material handling systems in the advanced assembly lines can be analyzed and developed by using the RFID. Smart storage systems can increase efficiency in part production systems by providing accurate information from the stored raw materials and products for the production planning systems. To increase efficiency of energy consumption in production processes, energy management systems can be developed by using the RFID-sensor networks. Therefore, smart factories and intelligent manufacturing systems as industry 4.0 can be introduced by using the developed RFID systems in order to provide new generation of part production systems. In this paper, a review of RFID based wireless manufacturing systems is presented and future research works are also suggested. It has been observed that the research filed can be moved forward by reviewing and analyzing recent achievements in the published papers

    Applications of RFID Technology in the Complex Product Assembly Executive Process

    Get PDF

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions
    corecore