28,758 research outputs found

    Agent-based services for the validation and calibration of multi-agent models

    Get PDF
    Agent-based modelling in the form of multi-agent models has been increasingly applied to the simulation of spatial phenomena in silico. Validation and calibration are recurrent problems. The complexity of these models with large numbers of parameters can make validation procedures intractable. In this paper, the novel concept of using agent-based technologies to create services that assist in the validation and calibration of multi-agent models is developed. Such agent-based services offer an efficient solution where large numbers of model runs need to be carried out. In this paper, the agent-based services are collaborative sets of agents that perform calibration and sensitivity analysis as a key task in model validation. In a case study, the prototype agent-based validation services are implemented for a multi-agent wayfinding model as a means of proof-of-concept. The case study demonstrates how agent-based services can be deployed for testing the robustness of emergent patterns through sensitivity analyses and used for model calibration

    Actors and factors - bridging social science findings and urban land use change modeling

    Get PDF
    Recent uneven land use dynamics in urban areas resulting from demographic change, economic pressure and the cities’ mutual competition in a globalising world challenge both scientists and practitioners, among them social scientists, modellers and spatial planners. Processes of growth and decline specifically affect the urban environment, the requirements of the residents on social and natural resources. Social and environmental research is interested in a better understanding and ways of explaining the interactions between society and landscape in urban areas. And it is also needed for making life in cities attractive, secure and affordable within or despite of uneven dynamics.\ud The position paper upon “Actors and factors – bridging social science findings and urban land use change modeling” presents approaches and ideas on how social science findings on the interaction of the social system (actors) and the land use (factors) are taken up and formalised using modelling and gaming techniques. It should be understood as a first sketch compiling major challenges and proposing exemplary solutions in the field of interest

    CAST – City analysis simulation tool: an integrated model of land use, population, transport and economics

    Get PDF
    The paper reports on research into city modelling based on principles of Science of Complexity. It focuses on integration of major processes in cities, such as economics, land use, transport and population movement. This is achieved using an extended Cellular Automata model, which allows cells to form networks, and operate on individual financial budgets. There are 22 cell types with individual processes in them. The formation of networks is based on supply and demand mechanisms for products, skills, accommodation, and services. Demand for transport is obtained as an emergent property of the system resulting from the network connectivity and relevant economic mechanisms. Population movement is a consequence of mechanisms in the housing and skill markets. Income and expenditure of cells are self-regulated through market mechanisms and changing patterns of land use are a consequence of collective interaction of all mechanisms in the model, which are integrated through emergence

    Combining diverse data sources for CEDSS, an agent-based model of domestic energy demand

    Get PDF
    CEDSS (Community Energy Demand Social Simulator) is an empirical agent-based model designed and built as part of a multi-method social science project investigating the determinants of domestic energy demand. Ideally, empirical modellers, within and beyond social simulation, would prefer to work from an integrated dataset, gatheredfor the purposes of developing the model. In practice, many have to work with less than ideal data, often including processed data from multiple sources external to the project. Moreover, what data will be required may not be clear at the start of the project. This paper describes the approach to dealing with these factors taken in developing CEDSS, and presents the completed model together with an outline of the calibration and validation procedure used. The discussion section draws together the most distinctive features of empirical data collection, processing and use for and in CEDSS, and argues that the approach taken is sufficiently robust to underpin the model’s purpose – to generate scenarios of domestic energy demand to 2049

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    Stochastic simulation framework for the Limit Order Book using liquidity motivated agents

    Full text link
    In this paper we develop a new form of agent-based model for limit order books based on heterogeneous trading agents, whose motivations are liquidity driven. These agents are abstractions of real market participants, expressed in a stochastic model framework. We develop an efficient way to perform statistical calibration of the model parameters on Level 2 limit order book data from Chi-X, based on a combination of indirect inference and multi-objective optimisation. We then demonstrate how such an agent-based modelling framework can be of use in testing exchange regulations, as well as informing brokerage decisions and other trading based scenarios

    Simulating Congestion Dynamics of Train Rapid Transit using Smart Card Data

    Get PDF
    Investigating congestion in train rapid transit systems (RTS) in today's urban cities is a challenge compounded by limited data availability and difficulties in model validation. Here, we integrate information from travel smart card data, a mathematical model of route choice, and a full-scale agent-based model of the Singapore RTS to provide a more comprehensive understanding of the congestion dynamics than can be obtained through analytical modelling alone. Our model is empirically validated, and allows for close inspection of the dynamics including station crowdedness, average travel duration, and frequency of missed trains---all highly pertinent factors in service quality. Using current data, the crowdedness in all 121 stations appears to be distributed log-normally. In our preliminary scenarios, we investigate the effect of population growth on service quality. We find that the current population (2 million) lies below a critical point; and increasing it beyond a factor of 10%\sim10\% leads to an exponential deterioration in service quality. We also predict that incentivizing commuters to avoid the most congested hours can bring modest improvements to the service quality provided the population remains under the critical point. Finally, our model can be used to generate simulated data for analytical modelling when such data are not empirically available, as is often the case.Comment: 10 pages, 5 figures, submitted to International Conference on Computational Science 201
    corecore