8,875 research outputs found

    Overlay networks for smart grids

    Get PDF

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Energy system optimisation and smart technologies - a social sciences and humanities annotated bibliography

    Get PDF
    The challenge: * Systems perspectives on energy involve a holistic view on balancing demand and supply; system optimisation can support security of supply, affordability, sustainability and profitability. * A central, and relatively recent, element of system optimisation is the move towards smart grids, and smart technologies, which concern interconnection of system elements usually through the internet. As well as increasing the resilience of the network, it is hoped this will help “citizens take ownership of the energy transition [and] benefit from new technologies”. * ‘Smartification’ of the energy system introduces a range of new societal conditions and consequences. The aim: * European energy policy has so far mainly relied on research from Science, Technology Engineering and Mathematics (STEM) disciplines. Energy-related Social Sciences and Humanities (energy-SSH) have been significantly underrepresented. The aim of this bibliography is to give policymakers a selected yet broad impression of the SSH research community focusing on ‘energy system optimisation and smart technologies’. Wherever possible, policy deductions or research and innovation recommendations are mentioned. Coverage: * Disciplines covered in this bibliography are broadly representative of the current SSH research community in the area, with a slight bias towards Economics, Sociology and Science & Technology Studies. Nevertheless, robust accounts from Psychology, Politics, Ethnography, Development, Environmental Social Science, Geography, Planning, Law, History and other fields are also included. * Geographically, research presented is primarily from Western and Northern Europe, but with diversity across these regions, and inclusion of some Eastern European and non-European contributions. * Techno-economic accounts are very highly represented in the field of energy system optimisation and smart technologies, a fact highlighted by researchers themselves. Much of this research concentrates on financial cost/benefit of smart grid and technical design, while approaches focusing on social practices or user-centric design are increasing but still underrepresented. The latter were deliberately given higher visibility in this bibliography. Key findings: * Numerous papers presented here focus on how questions of smart technology diffusion, innovation, and adoption might be shifted away from monetary incentives or cost/benefit analyses of technologies. * A unifying message across many topics and disciplines - from energy justice or socio-technical scenarios, to Economics or Ethnography - is that co-operation between techno-economic and SSH approaches needs more attention and is crucial for successful smart grid realisation. * Another important debate for SSH researchers is the deconstruction of overly optimistic visions of smart societies. Many authors urge caution in considering the (financial and social) costs and benefits of smart technologies for all of society, including issues of privacy intrusion. There are calls for more research on both policy initiatives, preferably targeting the community level, and clear communication strategies which fully consider these aspects

    Consider ethical and social challenges in smart grid research

    Get PDF
    Artificial Intelligence and Machine Learning are increasingly seen as key technologies for building more decentralised and resilient energy grids, but researchers must consider the ethical and social implications of their useComment: Preprint of paper published in Nature Machine Intelligence, vol. 1 (25 Nov. 2019

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases

    Get PDF
    Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function

    A generic holonic control architecture for heterogeneous multi-scale and multi-objective smart microgrids

    Get PDF
    Designing the control infrastructure of future “smart” power grids is a challenging task. Future grids will integrate a wide variety of heterogeneous producers and consumers that are unpredictable and operate at various scales. Information and Communication Technology (ICT) solutions will have to control these in order to attain global objectives at the macrolevel, while also considering private interests at the microlevel. This article proposes a generic holonic architecture to help the development of ICT control systems that meet these requirements. We show how this architecture can integrate heterogeneous control designs, including state-of-the-art smart grid solutions. To illustrate the applicability and utility of this generic architecture, we exemplify its use via a concrete proof-of-concept implementation for a holonic controller, which integrates two types of control solutions and manages a multiscale, multiobjective grid simulator in several scenarios. We believe that the proposed contribution is essential for helping to understand, to reason about, and to develop the “smart” side of future power grids
    • 

    corecore