3,153 research outputs found

    Dynamic, self-organized clusters as a means to supply and demand matching in large-scale energy systems

    Full text link

    A Review of Smart Energy Projects & Smart Energy State-of-the-Art

    Get PDF

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Techno-economic transition towards a hydrogen economy

    Get PDF
    PhDThe research conducted is in the field of innovation and focuses on the UK energy sector. The key theme of the study is the transition towards a hydrogen economy with fuel cell technologies at the epicentre and takes into account the relevant scientific, technological, economic and policy issues. In order to provide an understanding of the factors that affect techno-economic transitions to alternative energy systems, the thesis investigates the historical transition processes such as the transition to electrification in the early 1900s and recent transitions to CCGT and renewable energy systems (wind, biofuels and solar) that have taken place since the late 1980s. As the developmental status of hydrogen technologies lay at the heart of these transitions, a thorough analysis of the hydrogen and fuel cell technologies, the R&D requirements, and innovations required in different scientific fields (including materials science) to develop these technologies is conducted. At the same time, as other factors such as sustainability, climate change and security of supply concerns can greatly affect the direction of the transition processes, that includes R&D activities and investment in alternative energy technologies, an overview of these factors is also provided. The analysis employs a new theoretical framework that combines two well established theories in the literature, Techno-economic Transitions and Large Technological Systems. By using this new framework, the technological transition towards a hydrogen energy system can be analysed at three levels, (global, national and local). The analysis is narrowed down to the local level in order to determine the timing of a transition in London and how it can form the foundation for a wider a transition at the national level based on alternative technologies

    Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses

    Get PDF
    The following literature review sets out the state-of-the-art research relating to smart building principles and smart energy systems in UK higher education university campuses. The paper begins by discussing the carbon impact of the sector and the concept of ‘smart campuses' applied to the sector in the context of decarbonisation. Opportunities and challenges associated with integrating smart energy systems at the university campus from a policy and technical perspective are then discussed. This is followed by a review of building and campus-scale frameworks supporting a transition to smart energy campuses using the BPIE’ Smart Buildings' framework. The paper finds that the complexity of achieving net-zero carbon emissions for new and existing higher education buildings and energy systems can be addressed with the adoption of ‘smart building principles' and integrating 'smartness' into their energy systems. Several universities in the UK and worldwide are integrating smart services and Information and Communication Technologies (ICT) in their operations following the smart campus premise. At the building level, existing frameworks often create conceptual roadmaps for the smart building premise or propose technical implementation and assessment methods. At university campus scale, implementation typically comes through single-vector interventions, and only few examples exist that propose a multi-vector approach. Comparisons of the drivers and the decision-making process are made, with carbon and cost reduction being the most prominent from leveraging distributed energy generation. Therefore, this study identified the need for a comprehensive technical or policy framework to drive the uptake of the smart energy campus, aiming to bring together the holistic value of smart energy campuses

    Demand-Response in Smart Buildings

    Get PDF
    This book represents the Special Issue of Energies, entitled “Demand-Response in Smart Buildings”, that was published in the section “Energy and Buildings”. This Special Issue is a collection of original scientific contributions and review papers that deal with smart buildings and communities. Demand response (DR) offers the capability to apply changes in the energy usage of consumers—from their normal consumption patterns—in response to changes in energy pricing over time. This leads to a lower energy demand during peak hours or during periods when an electricity grid’s reliability is put at risk. Therefore, demand response is a reduction in demand designed to reduce peak load or avoid system emergencies. Hence, demand response can be more cost-effective than adding generation capabilities to meet the peak and/or occasional demand spikes. The underlying objective of DR is to actively engage customers in modifying their consumption in response to pricing signals. Demand response is expected to increase energy market efficiency and the security of supply, which will ultimately benefit customers by way of options for managing their electricity costs leading to reduced environmental impact

    Energy Systems Analysis and Modelling towards Decarbonisation

    Get PDF
    The Paris Agreement establishes a process to combine Nationally Determined Contributions with the long-term goal of limiting global warming to well below 2 °C or even to 1.5 °C. Responding to this challenge, EU and non-EU countries are preparing national and regional low-emission strategies outlining clean energy-transition pathways. The aim of this book is to provide rigorous quantitative assessment of the challenges, impacts and opportunities induced by ambitious low-emission pathways. It aims to explore how deep emission reductions can be achieved in all energy supply and demand sectors, exploring the interplay between mitigation options, including energy efficiency, renewable energy uptake and electrification, for decarbonising inflexible end-uses such as mobility and heating. The high expansion of renewable energy poses high technical and economic challenges regarding system configuration and market organisation, requiring the development of new options such as batteries, prosumers, grid expansion, chemical storage through power-to-X and new tariff setting methods. The uptake of disruptive mitigation options (hydrogen, CCUS, clean e-fuels) as well as carbon dioxide removal (BECCS, direct air capture, etc.) may also be required in the case of net-zero emission targets, but raises market, regulatory and financial challenges. This book assesses low-emission strategies at the national and global level and their implications for energy-system development, technology uptake, energy-system costs and the socioeconomic and industrial impacts of low-emission transitions
    • 

    corecore