33,088 research outputs found

    Agent-based computational modelling of social risk responses

    Get PDF
    A characteristic aspect of risks in a complex, modern society is the nature and degree of the public response – sometimes significantly at variance with objective assessments of risk. A large part of the risk management task involves anticipating, explaining and reacting to this response. One of the main approaches we have for analysing the emergent public response, the social amplification of risk framework, has been the subject of little modelling. The purpose of this paper is to explore how social risk amplification can be represented and simulated. The importance of heterogeneity among risk perceivers, and the role of their social networks in shaping risk perceptions, makes it natural to take an agent-based approach. We look in particular at how to model some central aspects of many risk events: the way actors come to observe other actors more than external events in forming their risk perceptions; the way in which behaviour both follows risk perception and shapes it; and the way risk communications are fashioned in the light of responses to previous communications. We show how such aspects can be represented by availability cascades, but also how this creates further problems of how to represent the contrasting effects of informational and reputational elements, and the differentiation of private and public risk beliefs. Simulation of the resulting model shows how certain qualitative aspects of risk response time series found empirically – such as endogenously-produced peaks in risk concern – can be explained by this model

    Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability

    Get PDF
    The integrated - environmental, economic and social - analysis of climate change calls for a paradigm shift as it is fundamentally a problem of complex, bottom-up and multi-agent human behaviour. There is a growing awareness that global environmental change dynamics and the related socio-economic implications involve a degree of complexity that requires an innovative modelling of combined social and ecological systems. Climate change policy can no longer be addressed separately from a broader context of adaptation and sustainability strategies. A vast body of literature on agent-based modelling (ABM) shows its potential to couple social and environmental models, to incorporate the influence of micro-level decision making in the system dynamics and to study the emergence of collective responses to policies. However, there are few publications which concretely apply this methodology to the study of climate change related issues. The analysis of the state of the art reported in this paper supports the idea that today ABM is an appropriate methodology for the bottom-up exploration of climate policies, especially because it can take into account adaptive behaviour and heterogeneity of the system's components.Review, Agent-Based Modelling, Socio-Ecosystems, Climate Change, Adaptation, Complexity.

    Prospects for large-scale financial systems simulation

    No full text
    As the 21st century unfolds, we find ourselves having to control, support, manage or otherwise cope with large-scale complex adaptive systems to an extent that is unprecedented in human history. Whether we are concerned with issues of food security, infrastructural resilience, climate change, health care, web science, security, or financial stability, we face problems that combine scale, connectivity, adaptive dynamics, and criticality. Complex systems simulation is emerging as the key scientific tool for dealing with such complex adaptive systems. Although a relatively new paradigm, it is one that has already established a track record in fields as varied as ecology (Grimm and Railsback, 2005), transport (Nagel et al., 1999), neuroscience (Markram, 2006), and ICT (Bullock and Cliff, 2004). In this report, we consider the application of simulation methodologies to financial systems, assessing the prospects for continued progress in this line of research

    Socio-hydrological modelling: a review asking “why, what and how?”

    Get PDF
    Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought

    What is a model, why people don't trust them, and why they should

    Get PDF
    It is easier to make one�s way in the world if one has some sort of expectation of the world�s future behaviour. Even when facing a very complex problem, we are rarely in a state of full ignorance: some expectations of system behaviour and the level of risk arising from uncertainty are usually available and it is on the basis of these expectations that most decisions are taken. Humans use models, which are mental or formal representations of reality, to generate these expectations, employing an ability that is shared more or less by all forms of life. Whether it is a tree responding to shortening day length by dropping its leaves and preparing its metabolism for the winter ahead or a naked Pleistocene ape storing food in advance of winter for the same reasons, both are using models. This view leads to two outcomes. The first is that predictions, seen as an expectation of ranges of future behaviours, are not just desirable, but necessary for decision-making. The often-asked question �do models provide reliable predictions?� then shifts to �given a certain problem, what type of models provide the most useful and reliable prediction?� The second outcome is that modelling is no longer a scientist�s activity but is instead a social process. Different types of models can be employed to ensure that all available information is included in model building and that model results are understood, trusted and acted upon

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    The role of social interaction in farmers' climate adaptation choice

    Get PDF
    Adaptation to climate change might not always occur, with potentially\ud catastrophic results. Success depends on coordinated actions at both\ud governmental and individual levels (public and private adaptation). Even for a “wet” country like the Netherlands, climate change projections show that the frequency and severity of droughts are likely to increase. Freshwater is an important factor for agricultural production. A deficit causes damage to crop production and consequently to a loss of income. Adaptation is the key to decrease farmers’ vulnerability at the micro level and the sector’s vulnerability at the macro level. Individual adaptation decision-making is determined by the behavior of economic agents and social interaction among them. This can be best studied with agentbased modelling. Given the uncertainty about future weather conditions and the costs and effectiveness of adaptation strategies, a farmer in the model uses a cognitive process (or heuristic) to make adaptation decisions. In this process, he can rely on his experiences and on information from interactions within his social network. Interaction leads to the spread of information and knowledge that causes learning. Learning changes the conditions for individual adaptation decisionmaking. All these interactions cause emergent phenomena: the diffusion of adaptation strategies and a change of drought vulnerability of the agricultural sector. In this paper, we present a conceptual model and the first implementation of an agent-based model. The aim is to study the role of interaction in a farmer’s social network on adaptation decisions and on the diffusion of adaptation strategies\ud and vulnerability of the agricultural sector. Micro-level survey data will be used to parameterize agents’ behavioral and interaction rules at a later stage. This knowledge is necessary for the successful design of public adaptation strategies, since governmental adaptation actions need to be fine-tuned to private adaptation behavior
    corecore