36,195 research outputs found

    Agent-Based Team Aiding in a Time Critical Task

    No full text
    In this paper we evaluate the effectiveness of agent-based aiding in support of a time-critical team-planning task for teams of both humans and heterogeneous software agents. The team task consists of human subjects playing the role of military commanders and cooperatively planning to move their respective units to a common rendezvous point, given time and resource constraints. The objective of the experiment was to compare the effectiveness of agent-based aiding for individual and team tasks as opposed to the baseline condition of manual route planning. There were two experimental conditions: the Aided condition, where a Route Planning Agent (RPA) finds a least cost plan between the start and rendezvous points for a given composition of force units; and the Baseline condition, where the commanders determine initial routes manually, and receive basic feedback about the route. We demonstrate that the Aided condition provides significantly better assistance for individual route planning and team-based re-planning

    Anytime Cognition: An information agent for emergency response

    Get PDF
    Planning under pressure in time-constrained environments while relying on uncertain information is a challenging task. This is particularly true for planning the response during an ongoing disaster in a urban area, be that a natural one, or a deliberate attack on the civilian population. As the various activities pertaining to the emergency response need to be coordinated in response to multiple reports from the disaster site, a user finds itself cognitively overloaded. To address this issue, we designed the Anytime Cognition (ANTICO) concept to assist human users working in time-constrained environments by maintaining a manageable level of cognitive workload over time. Based on the ANTICO concept, we develop an agent framework for proactively managing a user’s changing information requirements by integrating information management techniques with probabilistic plan recognition. In this paper, we describe a prototype emergency response application in the context of a subset of the attacks devised by the American Department of Homeland Security

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF

    Making intelligent systems team players: Overview for designers

    Get PDF
    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information

    An Analysis of Using Expert Systems and Intelligent Agents for the Virtual Library Project at the Naval Surface Warfare Center-Carderock Division

    Get PDF
    The Virtual Library Project1 at the Naval Surface Warfare Center/Carderock Division (NSWC/CD) is being developed to facilitate the incorporation and use of library documents via the Internet. These documents typically relate to the design and manufacture of ships for the U.S. Navy Fleet. As such, the libraries will store documents that contain not only text but also images, graphs and design configurations. Because of the dynamic nature of digital documents, particularly those related to design, rapid and effective cataloging of these documents becomes challenging. We conducted a research study to analyze the use of expert systems and intelligent agents to support the function of cataloging digital documents. This chapter provides an overview of past research in the use of expert systems and intelligent agents for cataloging digital documents and discusses our recommendations based on NSWC/CD’s requirements

    The Relations Between Pedagogical and Scientific Explanations of Algorithms: Case Studies from the French Administration

    Get PDF
    The opacity of some recent Machine Learning (ML) techniques have raised fundamental questions on their explainability, and created a whole domain dedicated to Explainable Artificial Intelligence (XAI). However, most of the literature has been dedicated to explainability as a scientific problem dealt with typical methods of computer science, from statistics to UX. In this paper, we focus on explainability as a pedagogical problem emerging from the interaction between lay users and complex technological systems. We defend an empirical methodology based on field work, which should go beyond the in-vitro analysis of UX to examine in-vivo problems emerging in the field. Our methodology is also comparative, as it chooses to steer away from the almost exclusive focus on ML to compare its challenges with those faced by more vintage algorithms. Finally, it is also philosophical, as we defend the relevance of the philosophical literature to define the epistemic desiderata of a good explanation. This study was conducted in collaboration with Etalab, a Task Force of the French Prime Minister in charge of Open Data & Open Government Policies, dealing in particular with the enforcement of the right to an explanation. In order to illustrate and refine our methodology before going up to scale, we conduct a preliminary work of case studies on the main different types of algorithms used by the French administration: computation, matching algorithms and ML. We study the merits and drawbacks of a recent approach to explanation, which we baptize input-output black box reasoning or BBR for short. We begin by presenting a conceptual framework including the distinctions necessary to a study of pedagogical explainability. We proceed to algorithmic case studies, and draw model-specific and model-agnostic lessons and conjectures

    Decentralized Control of Partially Observable Markov Decision Processes using Belief Space Macro-actions

    Get PDF
    The focus of this paper is on solving multi-robot planning problems in continuous spaces with partial observability. Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for multi-robot coordination problems, but representing and solving Dec-POMDPs is often intractable for large problems. To allow for a high-level representation that is natural for multi-robot problems and scalable to large discrete and continuous problems, this paper extends the Dec-POMDP model to the decentralized partially observable semi-Markov decision process (Dec-POSMDP). The Dec-POSMDP formulation allows asynchronous decision-making by the robots, which is crucial in multi-robot domains. We also present an algorithm for solving this Dec-POSMDP which is much more scalable than previous methods since it can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed method's performance is evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent multi-robot problems and provide high-quality solutions for large-scale problems
    • …
    corecore