3,497 research outputs found

    Decentralized dynamic task allocation for UAVs with limited communication range

    Full text link
    We present the Limited-range Online Routing Problem (LORP), which involves a team of Unmanned Aerial Vehicles (UAVs) with limited communication range that must autonomously coordinate to service task requests. We first show a general approach to cast this dynamic problem as a sequence of decentralized task allocation problems. Then we present two solutions both based on modeling the allocation task as a Markov Random Field to subsequently assess decisions by means of the decentralized Max-Sum algorithm. Our first solution assumes independence between requests, whereas our second solution also considers the UAVs' workloads. A thorough empirical evaluation shows that our workload-based solution consistently outperforms current state-of-the-art methods in a wide range of scenarios, lowering the average service time up to 16%. In the best-case scenario there is no gap between our decentralized solution and centralized techniques. In the worst-case scenario we manage to reduce by 25% the gap between current decentralized and centralized techniques. Thus, our solution becomes the method of choice for our problem

    Distributed formation control of multiple unmanned aerial vehicles over time-varying graphs using population games

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a control technique based on distributed population dynamics under time-varying communication graphs for a multi-agent system structured in a leader-follower fashion. Here, the leader agent follows a particular trajectory and the follower agents should track it in a certain organized formation manner. The tracking of the leader can be performed in the position coordinates x; y; and z, and in the yaw angle phi. Additional features are performed with this method: each agent has only partial knowledge of the position of other agents and not necessarily all agents should communicate to the leader. Moreover, it is possible to integrate a new agent into the formation (or for an agent to leave the formation task) in a dynamical manner. In addition, the formation configuration can be changed along the time, and the distributed population-games-based controller achieves the new organization goal accommodating conveniently the information-sharing graph in function of the communication range capabilities of each UAV. Finally, several simulations are presented to illustrate different scenarios, e.g., formation with time-varying communication network, and time-varying formationPeer ReviewedPostprint (author's final draft
    • …
    corecore