162,340 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    A Mathematical Model of Dialog

    Get PDF
    AbstractComputer Science is currently undergoing a paradigm shift, from viewing computer systems as isolated programs to viewing them as dynamic multi-agent societies. Evidence of this shift is the significant effort devoted recently to the design and implementation of languages and protocols for communications and interaction between software agents. Despite this effort, no formal mathematical theory of agent interaction languages and protocols yet exists. We argue that such a theory needs to account for the semantics of agent interaction, and propose the first mathematical theory which does this. Our framework incorporates category-theoretic entities for the utterances made in an agent dialog and for the commitments incurred by those utterances, together with maps between these

    Some Questions Inspired by (Membrane Computing Motivated) Language-Theoretic Models

    Get PDF
    This contribution argues for the proposition that formal models based on the theory of formal grammars and languages are adequate for the study of some computationally relevant properties of agents and multi-agent systems. Some questions are formulated concerning the possibilities to enlarge the universality and realism of such models by considering the possibilities to go with their computing abilities beyond the traditional Turing-computability, and by considering very natural properties of any real (multi-)agent system such as the partially predictable functioning (behavior) of agents, their unreliability, dysfunctions, etc

    Overview on Agent-Based Social Modelling and the Use of Formal Languages

    Get PDF
    The use of agent-based modelling and simulation techniques in the social sciences has flourished in the recent decades. The main reason is that the object of study in these disciplines, human society present or past, is difficult to analyse through classical analytical techniques. Population dynamics and structures are inherently complex. Thus, other methodological techniques need to be found to more adequately study this field. In this context, agent-based modelling is encouraging the introduction of computer simulations to examine behavioural patterns in complex systems. Simulation provides a tool to artificially examine societies where a big number of actors with decision capacity coexist and interact. However, formal modelling in these areas has not traditionally been used compared to other fields of science, in particular in their use of formal languages during the modelling process. In this chapter, the authors aim to revise the most relevant aspects on modelling in social sciences and to discuss the use formal languages by social scientists

    Proof-theoretic Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets

    Full text link
    In the context of strategic games, we provide an axiomatic proof of the statement Common knowledge of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. Rationality here means playing only strategies one believes to be best responses. This involves looking at two formal languages. One is first-order, and is used to formalise optimality conditions, like avoiding strictly dominated strategies, or playing a best response. The other is a modal fixpoint language with expressions for optimality, rationality and belief. Fixpoints are used to form expressions for common belief and for iterated elimination of non-optimal strategies.Comment: 16 pages, Proc. 11th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA XI). To appea

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin
    corecore