294,337 research outputs found

    An MAS Based Energy Management System for a Stand-Alone Microgrid at High Altitude

    Get PDF
    A multi-agent system based energy management system (EMS) is proposed in this paper for implementing a PV-small hydro hybrid microgrid (MG) at high altitude. Based on local information, the distributed generation (DG) sources in the MG are controlled via the EMS to achieve efficient and stable system operation. Virtual bidding is used to quickly establish the scheduling of system operation and capacity reserve. In addition, real-time power dispatches are carried out through model predictive control to balance load demand and power generation in the MG. The dynamic model and the energy management strategy of the MG have been simulated on a RTDS–PXI joint real-time simulation platform. The simulation results show that the proposed energy management and control strategy can optimally dispatch the DG sources in the MG to achieve economic and secure operations of the whole system

    Autonomous energy management system with self-healing capabilities for green buildings (microgrids)

    Get PDF
    Nowadays, distributed energy resources are widely used to supply demand in micro grids specially in green buildings. These resources are usually connected by using power electronic converters, which act as actuators, to the system and make it possible to inject desired active and reactive power, as determined by smart controllers. The overall performance of a converter in such system depends on the stability and robustness of the control techniques. This paper presents a smart control and energy management of a DC microgrid that split the demand among several generators. In this research, an energy management system ( EMS) based on multi-agent system ( MAS) controllers is developed to manage energy, control the voltage and create balance between supply and demand in the system with the aim of supporting the reliability characteristic. In the proposed approach, a reconfigurated hierarchical algorithm is implemented to control interaction of agents, where a CAN bus is used to provide communication among them. This framework has ability to control system, even if a failure appears into decision unit. Theoretical analysis and simulation results for a practical model demonstrate that the proposed technique provides a robust and stable control of a microgrid

    Applications of Multi-Agent System in Power System Engineering

    Get PDF
    Power system needs a continuous upgrade to overcome the challenges like distributed control, self-healing, power quality, demand side management and integration of renewable system. At present, power system needs an advance and intelligent technology to perform various system level tasks. Centralized control of the system has efficient operation during integration of the renewable resources and lag of communication between the stations. Smart grid provides the intelligent and efficient power management system. Upgrade of present power system with multi-agent system (MAS) provides the solution for most of the power system issues. More number of MAS are used in the power system network based on acquires of the system. MAS are communicating with each other for the more acquired result. Better implantation of MAS can achieved by providing the high speed and secured communication protocol. In this chapter, we discussed about the MAS fundamental architecture and intelligent controller design tools and case study of real time tariff management using MAS

    Architecture of a Microgrid and Optimal Energy Management System

    Get PDF
    With the growing population trends, the demand for electricity is accelerating rapidly. The policy planners and developers have great focus to utilize renewable energy resources (RERs) to encounter the scarcity of energy since they offer benefits to the environment and power systems. At present, the energy generation is evolving into a smart distribution system that assimilates several energy resources assuring to generate clean energy, to have reliable operational procedures, and to enhance the energy supervision and management arrangements. Therefore, the model of a distributed microgrid (DMG) with optimal energy management strategies based on multi-agent systems (MASs) technique has been focused in this chapter. Distributed energy resources (DER) have been considered for the generation of electrical power to fulfill the consumer’s load demands. Thus, a fully controlled architecture of a grid along with concept of MAS and its development platforms, implementation, and operational procedures have been discussed in detail. In addition, agent’s operations and their coordination within the MG arrangements have been focused by considering the supervision of the entire system autonomously. Moreover, optimal procedures of a microgrid (MG) energy supervision and power distribution system have also been presented considering the cost control and optimal operations of the entire MG at the distributed level

    A Review of Forecasting Algorithms and Energy Management Strategies for Microgrids

    Get PDF
    As an autonomous subsystem integrating with the utility, a microgrid system consists of distributed energy sources, power conversion circuits, storage units and adjustable loads. With the high penetration of distributed generators, it is challenging to provide a reliable, consistent power supply for local customers, because of the time-varying weather conditions and intermittent energy outputs in nature. Likewise, the electricity consumption changes due to the season effect and human behaviour in response to the changes in electricity tariff. Therefore, studies on accurate forecasting power generation and load demand are worthwhile in order to solve unit commitment and schedule the operation of energy storage devices. The paper firstly gives a brief introduction about microgrid and reviews forecasting algorithms for power supply side and load demand. Then, the mainstream energy management approaches applied to the microgrid, including centralized control, decentralized control and distributed control schemes are presented. A number of the optimal energy management algorithms are highlighted for centralized controllers based on short-term forecasting information and a generalized centralized control scheme is thus summarized. Consensus protocol is discussed in this paper to solve the cooperative problem under the multi-agent system-based distributed energy system. Finally, the future of energy forecasting approaches and energy management strategies are discussed

    Cyclic blackout mitigation and prevention

    Get PDF
    Severe and long-lasting power shortages plague many countries, resulting in cyclic blackouts affecting the life of millions of people. This research focuses on the design, development and evolution of a computer-controlled system for chronic cyclic blackouts mitigation based on the use of an agent-based distributed power management system integrating Supply Demand Matching (SDM) with the dynamic management of Heat, Ventilation, and Air Conditioning (HVAC) appliances. The principle is supported through interlocking different types of HVAC appliances within an adaptive cluster, the composition of which is dynamically updated according to the level of power secured from aggregating the surplus power from underutilised standby generation which is assumed to be changing throughout the day. The surplus power aggregation provides a dynamically changing flow, used to power a basic set of appliances and one HVAC per household. The proposed solution has two modes, cyclic blackout mitigation and prevention modes, selecting either one depends on the size of the power shortage. If the power shortage is severe, the system works in its cyclic blackout mitigation mode during the power OFF periods of a cyclic blackout. The system changes the composition of the HVAC cluster so that its demand added to the demand of basic household appliances matches the amount of secured supply. The system provides the best possible air conditioning/cooling service and distributes the usage right and duration of each type of HVAC appliance either equally among all houses or according to house temperature. However if the power shortage is limited and centred around the peak, the system works in its prevention mode, in such case, the system trades a minimum number of operational air conditioners (ACs) with air cooling counterparts in so doing reducing the overall demand. The solution assumes the use of a new breed of smart meters, suggested in this research, capable of dynamically rationing power provided to each household through a centrally specified power allocation for each family. This smart meter dynamically monitors each customer’s demand and ensures their allocation is never exceeded. The system implementation is evaluated utilising input power usage patterns collected through a field survey conducted in a residential quarter in Basra City, Iraq. The results of the mapping formed the foundation for a residential demand generator integrated in a custom platform (DDSM-IDEA) built as the development environment dedicated for implementing and evaluating the power management strategies. Simulation results show that the proposed solution provides an equitably distributed, comfortable quality of life level during cyclic blackout periods.Severe and long-lasting power shortages plague many countries, resulting in cyclic blackouts affecting the life of millions of people. This research focuses on the design, development and evolution of a computer-controlled system for chronic cyclic blackouts mitigation based on the use of an agent-based distributed power management system integrating Supply Demand Matching (SDM) with the dynamic management of Heat, Ventilation, and Air Conditioning (HVAC) appliances. The principle is supported through interlocking different types of HVAC appliances within an adaptive cluster, the composition of which is dynamically updated according to the level of power secured from aggregating the surplus power from underutilised standby generation which is assumed to be changing throughout the day. The surplus power aggregation provides a dynamically changing flow, used to power a basic set of appliances and one HVAC per household. The proposed solution has two modes, cyclic blackout mitigation and prevention modes, selecting either one depends on the size of the power shortage. If the power shortage is severe, the system works in its cyclic blackout mitigation mode during the power OFF periods of a cyclic blackout. The system changes the composition of the HVAC cluster so that its demand added to the demand of basic household appliances matches the amount of secured supply. The system provides the best possible air conditioning/cooling service and distributes the usage right and duration of each type of HVAC appliance either equally among all houses or according to house temperature. However if the power shortage is limited and centred around the peak, the system works in its prevention mode, in such case, the system trades a minimum number of operational air conditioners (ACs) with air cooling counterparts in so doing reducing the overall demand. The solution assumes the use of a new breed of smart meters, suggested in this research, capable of dynamically rationing power provided to each household through a centrally specified power allocation for each family. This smart meter dynamically monitors each customer’s demand and ensures their allocation is never exceeded. The system implementation is evaluated utilising input power usage patterns collected through a field survey conducted in a residential quarter in Basra City, Iraq. The results of the mapping formed the foundation for a residential demand generator integrated in a custom platform (DDSM-IDEA) built as the development environment dedicated for implementing and evaluating the power management strategies. Simulation results show that the proposed solution provides an equitably distributed, comfortable quality of life level during cyclic blackout periods

    Energy resources management in three distinct time horizons considering a large variation in wind power

    Get PDF
    The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players

    Mobile agent based distributed network management : modeling, methodologies and applications

    Get PDF
    The explosive growth of the Internet and the continued dramatic increase for all wireless services are fueling the demand for increased capacity, data rates, support of multimedia services, and support for different Quality of Services (QoS) requirements for different classes of services. Furthermore future communication networks will be strongly characterized by heterogeneity. In order to meet the objectives of instant adaptability to the users\u27 requirements and of interoperability and seamless operation within the heterogeneous networking environments, flexibility in terms of network and resource management will be a key design issue. The new emerging technology of mobile agent (MA) has arisen in the distributed programming field as a potential flexible way of managing resources of a distributed system, and is a challenging opportunity for delivering more flexible services and dealing with network programmability. This dissertation mainly focuses on: a) the design of models that provide a generic framework for the evaluation and analysis of the performance and tradeoffs of the mobile agent management paradigm; b) the development of MA based resource and network management applications. First, in order to demonstrate the use and benefits of the mobile agent based management paradigm in the network and resource management process, a commercial application of a multioperator network is introduced, and the use of agents to provide the underlying framework and structure for its implementation and deployment is investigated. Then, a general analytical model and framework for the evaluation of various network management paradigms is introduced and discussed. It is also illustrated how the developed analytical framework can be used to quantitatively evaluate the performances and tradeoffs in the various computing paradigms. Furthermore, the design tradeoffs for choosing the MA based management paradigm to develop a flexible resource management scheme in wireless networks is discussed and evaluated. The integration of an advanced bandwidth reservation mechanism with a bandwidth reconfiguration based call admission control strategy is also proposed. A framework based on the technology of mobile agents, is introduced for the efficient implementation of the proposed integrated resource and QoS management, while the achievable performance of the overall proposed management scheme is evaluated via modeling and simulation. Finally the use of a distributed cooperative scheme among the mobile agents that can be applied in the future wireless networks is proposed and demonstrated, to improve the energy consumption for the routine management processes of mobile terminals, by adopting the peer-to-peer communication concept of wireless ad-hoc networks. The performance evaluation process and the corresponding numerical results demonstrate the significant system energy savings, while several design issues and tradeoffs of the proposed scheme, such as the fairness of the mobile agents involved in the management activity, are discussed and evaluated

    Information Theory and Cooperative Control in Networked Multi-Agent Systems with Applications to Smart Grid

    Get PDF
    This dissertation focuses on information theoretic aspects of and cooperative control techniques in networked multi-agent systems (NMAS) with communication constraints. In the first part of the dissertation, information theoretic limitations of tracking problems in networked control systems, especially leader-follower systems with communication constraints, are studied. Necessary conditions on the data rate of each communication link for tracking of the leader-follower systems are provided. By considering the forward and feedback channels as one cascade channel, we also provide a lower bound for the data rate of the cascade channel for the system to track a reference signal such that the tracking error has finite second moment. Finally, the aforementioned results are extended to the case in which the leader system and follower system have different system models. In the second part, we propose an easily scalable hierarchical decision-making and control architecture for smart grid with communication constraints in which distributed customers equipped with renewable distributed generation (RDG) interact and trade energy in the grid. We introduce the key components and their interactions in the proposed control architecture and discuss the design of distributed controllers which deal with short-term and long-term grid stability, power load balancing and energy routing. At microgrid level, under the assumption of user cooperation and inter-user communications, we propose a distributed networked control strategy to solve the demand-side management problem in microgrids. Moreover, by considering communication delays between users and microgrid central controller, we propose a distributed networked control strategy with prediction to solve the demand-side management problem with communication delays. In the third part, we consider the disturbance attenuation and stabilization problem in networked control systems. To be specific, we consider the string stability in a large group of interconnected systems over a communication network. Its potential applications could be found in formation tracking control in groups of robots, as well as uncertainty reduction and disturbance attenuation in smart grid. We propose a leader-following consensus protocol for such interconnected systems and derive the sufficient conditions, in terms of communication topology and control parameters, for string stability. Simulation results and performance in terms of disturbance propagation are also given. In the fourth part, we consider distributed tracking and consensus in networked multi-agent systems with noisy time-varying graphs and incomplete data. In particular, a distributed tracking with consensus algorithm is developed for the space-object tracking with a satellite surveillance network. We also intend to investigate the possible application of such methods in smart grid networks. Later, conditions for achieving distributed consensus are discussed and the rate of convergence is quantified for noisy time-varying graphs with incomplete data. We also provide detailed simulation results and performance comparison of the proposed distributed tracking with consensus algorithm in the case of space-object tracking problem and that of distributed local Kalman filtering with centralized fusion and centralized Kalman filter. The information theoretic limitations developed in the first part of this dissertation provide guildlines for design and analysis of tracking problems in networked control systems. The results reveal the mutual interaction and joint application of information theory and control theory in networked control systems. Second, the proposed architectures and approaches enable scalability in smart grid design and allow resource pooling among distributed energy resources (DER) so that the grid stability and optimality is maintained. The proposed distributed networked control strategy with prediction provides an approach for cooperative control at RDG-equipped customers within a self-contained microgrid with different feedback delays. Our string stability analysis in the third part of this dissertation allows a single networked control system to be extended to a large group of interconnected subsystems while system stability is still maintained. It also reveals the disturbance propagation through the network and the effect of disturbance in one subsystem on other subsystems. The proposed leader-following consensus protocol in the constrained communication among users reveals the effect of communication in stabilization of networked control systems and the interaction between communication and control over a network. Finally, the distributed tracking and consensus in networked multi-agent systems problem shows that information sharing among users improves the quality of local estimates and helps avoid conflicting and inefficient distributed decisions. It also reveals the effect of the graph topologies and incomplete node measurements on the speed of achieving distributed decision and final consensus accuracy
    • …
    corecore