13,913 research outputs found

    SimpactCyan 1.0 : an open-source simulator for individual-based models in HIV epidemiology with R and Python interfaces

    Get PDF
    SimpactCyan is an open-source simulator for individual-based models in HIV epidemiology. Its core algorithm is written in C++ for computational efficiency, while the R and Python interfaces aim to make the tool accessible to the fast-growing community of R and Python users. Transmission, treatment and prevention of HIV infections in dynamic sexual networks are simulated by discrete events. A generic “intervention” event allows model parameters to be changed over time, and can be used to model medical and behavioural HIV prevention programmes. First, we describe a more efficient variant of the modified Next Reaction Method that drives our continuous-time simulator. Next, we outline key built-in features and assumptions of individual-based models formulated in SimpactCyan, and provide code snippets for how to formulate, execute and analyse models in SimpactCyan through its R and Python interfaces. Lastly, we give two examples of applications in HIV epidemiology: the first demonstrates how the software can be used to estimate the impact of progressive changes to the eligibility criteria for HIV treatment on HIV incidence. The second example illustrates the use of SimpactCyan as a data-generating tool for assessing the performance of a phylodynamic inference framework

    A Workflow for Software Development within Computational Epidemiology

    Get PDF
    A critical investigation into computational models developed for studying the spread of communicable disease is presented. The case in point is a spatially explicit micro-meso-macro model for the entire Swedish population built on registry data, thus far used for smallpox and for influenza-like illnesses. The lessons learned from a software development project of more than 100 person months are collected into a check list. The list is intended for use by computational epidemiologists and policy makers, and the workflow incorporating these two roles is described in detail.NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Computationa Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Science, VOL 2, ISSUE 3, 6 June 2011 DOI 10.1016/j.jocs.2011.05.004.</p

    An Agent-Based Spatially Explicit Epidemiological Model in MASON

    Get PDF
    This paper outlines the design and implementation of an agent-based epidemiological simulation system. The system was implemented in the MASON toolkit, a set of Java-based agent-simulation libraries. This epidemiological simulation system is robust and extensible for multiple applications, including classroom demonstrations of many types of epidemics and detailed numerical experimentation on a particular disease. The application has been made available as an applet on the MASON web site, and as source code on the author\'s web site.Epidemiology, Social Networks, Agent-Based Simulation, MASON Toolkit

    Equation-Free Multiscale Computational Analysis of Individual-Based Epidemic Dynamics on Networks

    Full text link
    The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be one of the major challenges nowadays. Detailed atomistic mathematical models play an important role towards this aim. In this work it is shown how one can exploit the Equation Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic simulation with coarse-grained, systems-level, analysis. The methodology provides a systematic approach for analyzing the parametric behavior of complex/ multi-scale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based epidemic model deploying on a random regular connected graph. Using the individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level under a pairwise representation perspective

    Analysis of CDC social control measures using an agent-based simulation of an influenza epidemic in a city

    Get PDF
    Background: the transmission of infectious disease amongst the human population is a complex process which requires advanced, often individual-based, models to capture the space-time details observed in reality.Methods: an Individual Space-Time Activity-based Model (ISTAM) was applied to simulate the effectiveness of non-pharmaceutical control measures including: (1) refraining from social activities, (2) school closure and (3) household quarantine, for a hypothetical influenza outbreak in an urban area.Results: amongst the set of control measures tested, refraining from social activities with various compliance levels was relatively ineffective. Household quarantine was very effective, especially for the peak number of cases and total number of cases, with large differences between compliance levels. Household quarantine resulted in a decrease in the peak number of cases from more than 300 to around 158 for a 100% compliance level, a decrease of about 48.7%. The delay in the outbreak peak was about 3 to 17 days. The total number of cases decreased to a range of 3635-5403, that is, 63.7%-94.7% of the baseline value.When coupling control measures, household quarantine together with school closure was the most effective strategy. The resulting space-time distribution of infection in different classes of activity bundles (AB) suggests that the epidemic outbreak is strengthened amongst children and then spread to adults. By sensitivity analysis, this study demonstrated that earlier implementation of control measures leads to greater efficacy. Also, for infectious diseases with larger basic reproduction number, the effectiveness of non-pharmaceutical measures was shown to be limited.Conclusions: simulated results showed that household quarantine was the most effective control measure, while school closure and household quarantine implemented together achieved the greatest benefit. Agent-based models should be applied in the future to evaluate the efficacy of control measures for a range of disease outbreaks in a range of settings given sufficient information about the given case and knowledge about the transmission processes at a fine scal
    • 

    corecore