6,131 research outputs found

    Resilient Distributed Energy Management for Systems of Interconnected Microgrids

    Get PDF
    In this paper, distributed energy management of interconnected microgrids, which is stated as a dynamic economic dispatch problem, is studied. Since the distributed approach requires cooperation of all local controllers, when some of them do not comply with the distributed algorithm that is applied to the system, the performance of the system might be compromised. Specifically, it is considered that adversarial agents (microgrids with their controllers) might implement control inputs that are different than the ones obtained from the distributed algorithm. By performing such behavior, these agents might have better performance at the expense of deteriorating the performance of the regular agents. This paper proposes a methodology to deal with this type of adversarial agents such that we can still guarantee that the regular agents can still obtain feasible, though suboptimal, control inputs in the presence of adversarial behaviors. The methodology consists of two steps: (i) the robustification of the underlying optimization problem and (ii) the identification of adversarial agents, which uses hypothesis testing with Bayesian inference and requires to solve a local mixed-integer optimization problem. Furthermore, the proposed methodology also prevents the regular agents to be affected by the adversaries once the adversarial agents are identified. In addition, we also provide a sub-optimality certificate of the proposed methodology.Comment: 8 pages, Conference on Decision and Control (CDC) 201

    Distributed watermarking for secure control of microgrids under replay attacks

    Full text link
    The problem of replay attacks in the communication network between Distributed Generation Units (DGUs) of a DC microgrid is examined. The DGUs are regulated through a hierarchical control architecture, and are networked to achieve secondary control objectives. Following analysis of the detectability of replay attacks by a distributed monitoring scheme previously proposed, the need for a watermarking signal is identified. Hence, conditions are given on the watermark in order to guarantee detection of replay attacks, and such a signal is designed. Simulations are then presented to demonstrate the effectiveness of the technique

    Protection of Active Distribution Networks and Their Cyber Physical Infrastructure

    Get PDF
    Today’s Smart Grid constitutes several smaller interconnected microgrids. However, the integration of converter-interfaced distributed generation (DG) in microgrids has raised several issues such as the fact that fault currents in these systems in islanded mode are way less than those in grid connected microgrids. Therefore, microgrid protection schemes require a fast, reliable and robust communication system, with backup, to automatically adjust relay settings for the appropriate current levels according to the microgrid’s operation mode. However, risks of communication link failures, cyber security threats and the high cost involved to avoid them are major challenges for the implementation of an economic adaptive protection scheme. This dissertation proposes an adaptive protection scheme for AC microgrids which is capable of surviving communication failures. The contribution is the use of an energy storage system as the main contributor to fault currents in the microgrid’s islanded mode when the communication link fails to detect the shift to the islanded mode. The design of an autonomous control algorithm for the energy storage’s AC/DC converter capable of operating when the microgrid is in both grid-connected and islanded mode. Utilizing a single mode of operation for the converter will eliminate the reliance on communicated control command signals to shift the controller between different modes. Also, the ability of the overall system to keep stable voltage and frequency levels during extreme cases such as the occurrence of a fault during a peak pulse load period. The results of the proposed protection scheme showed that the energy storage -inverter system is able to contribute enough fault current for a sufficient duration to cause the system protection devices to clear the fault in the event of communication loss. The proposed method was investigated under different fault types and showed excellent results of the proposed protection scheme. In addition, it was demonstrated in a case study that, whenever possible, the temporary disconnection of the pulse load during the fault period will allow the utilization of smaller energy storage device capacity to feed fault currents and thus reduce the overall expenditures. Also, in this dissertation we proposed a hybrid hardware-software co-simulation platform capable of modeling the relation between the cyber and physical parts to provide a protection scheme for the microgrid. The microgrid was simulated on MATLAB/Simulink SimPowerSystems to model the physical system dynamics, whereas all control logic was implemented on embedded microcontrollers communicating over a real network. This work suggested a protection methodology utilizing contemporary communication technologies between multi-agents to protect the microgrid

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • …
    corecore