3,521 research outputs found

    Integrated engineering environments for large complex products

    Get PDF
    An introduction is given to the Engineering Design Centre at the University of Newcastle upon Tyne, along with a brief explanation of the main focus towards large made-to-order products. Three key areas of research at the Centre, which have evolved as a result of collaboration with industrial partners from various sectors of industry, are identified as (1) decision support and optimisation, (2) design for lifecycle, and (3) design integration and co-ordination. A summary of the unique features of large made-to-order products is then presented, which includes the need for integration and co-ordination technologies. Thus, an overview of the existing integration and co-ordination technologies is presented followed by a brief explanation of research in these areas at the Engineering Design Centre. A more detailed description is then presented regarding the co-ordination aspect of research being conducted at the Engineering Design Centre, in collaboration with the CAD Centre at the University of Strathclyde. Concurrent Engineering is acknowledged as a strategy for improving the design process, however design coordination is viewed as a principal requirement for its successful implementation. That is, design co-ordination is proposed as being the key to a mechanism that is able to maximise and realise any potential opportunity of concurrency. Thus, an agentoriented approach to co-ordination is presented, which incorporates various types of agents responsible for managing their respective activities. The co-ordinated approach, which is implemented within the Design Co-ordination System, includes features such as resource management and monitoring, dynamic scheduling, activity direction, task enactment, and information management. An application of the Design Co-ordination System, in conjunction with a robust concept exploration tool, shows that the computational design analysis involved in evaluating many design concepts can be performed more efficiently through a co-ordinated approach

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Realising intelligent virtual design

    Get PDF
    This paper presents a vision and focus for the CAD Centre research: the Intelligent Design Assistant (IDA). The vision is based upon the assumption that the human and computer can operate symbiotically, with the computer providing support for the human within the design process. Recently however the focus has been towards the development of integrated design platforms that provide general support irrespective of the domain, to a number of distributed collaborative designers. This is illustrated within the successfully completed Virtual Reality Ship (VRS) virtual platform, and the challenges are discussed further within the NECTISE, SAFEDOR and VIRTUE projects

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Realising intelligent virtual design

    Get PDF
    This paper presents a vision and focus for the CAD Centre research: the Intelligent Design Assistant (IDA). The vision is based upon the assumption that the human and computer can operate symbiotically, with the computer providing support for the human within the design process. Recently however the focus has been towards the development of integrated design platforms that provide general support irrespective of the domain, to a number of distributed collaborative designers. This is illustrated within the successfully completed Virtual Reality Ship (VRS) virtual platform, and the challenges are discussed further within the NECTISE, SAFEDOR and VIRTUE projects

    Virtual integration platform for computational fluid dynamics

    Get PDF
    Computational Fluid Dynamics (CFD) tools used in shipbuilding industry involve multiple disciplines, such as resistance, manoeuvring, and cavitation. Traditionally, the analysis was performed separately and sequentially in each discipline, which often resulted in conflict and inconsistency of hydrodynamic prediction. In an effort to solve such problems for future CFD computations, a Virtual Integration Platform (VIP) has been developed in the University of Strathclyde within two EU FP6 projects - VIRTUE and SAFEDOR1. The VIP provides a holistic collaborative environment for designers with features such as Project/Process Management, Distributed Tools Integration, Global Optimisation, Version Management, and Knowledge Management. These features enhance collaboration among customers, ship design companies, shipyards, and consultancies not least because they bring together the best expertise and resources around the world. The platform has been tested in seven European ship design companies including consultancies. Its main functionalities along with advances are presented in this paper with two industrial applications

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    A design view of capability

    Get PDF
    In order to optimise resource deployment in a rapid changing operational environment, capability has received increasing concerns in terms of maximising the utilisation of resources. As a result of such extant research, different domains were seen to endow different meanings to capability, indicating a lack of common understanding of the true nature of capability. This paper presents a design view of capability from design artefact knowledge perspective. Capability is defined as an intrinsic quality of an entity closely related to artefact behavioural and structural knowledge. Design artefact knowledge was categorised across expected, instantiated, and interpreted artefact knowledge spaces (ES, IsS, and ItS). Accordingly, it suggests that three types of capability exist in the three spaces, which can be used in employing resources. Moreover, Network Enabled Capability (NEC), the capability of a set of linked resources within a specific environment is discussed, with an example of how network resources are deployed in a Virtual Integration Platform (VIP)
    corecore