4,188 research outputs found

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Early warning signs for saddle-escape transitions in complex networks

    Get PDF
    Many real world systems are at risk of undergoing critical transitions, leading to sudden qualitative and sometimes irreversible regime shifts. The development of early warning signals is recognized as a major challenge. Recent progress builds on a mathematical framework in which a real-world system is described by a low-dimensional equation system with a small number of key variables, where the critical transition often corresponds to a bifurcation. Here we show that in high-dimensional systems, containing many variables, we frequently encounter an additional non-bifurcative saddle-type mechanism leading to critical transitions. This generic class of transitions has been missed in the search for early-warnings up to now. In fact, the saddle-type mechanism also applies to low-dimensional systems with saddle-dynamics. Near a saddle a system moves slowly and the state may be perceived as stable over substantial time periods. We develop an early warning sign for the saddle-type transition. We illustrate our results in two network models and epidemiological data. This work thus establishes a connection from critical transitions to networks and an early warning sign for a new type of critical transition. In complex models and big data we anticipate that saddle-transitions will be encountered frequently in the future.Comment: revised versio

    Networks based on collisions among mobile agents

    Get PDF
    We investigate in detail a recent model of colliding mobile agents [Phys. Rev. Lett.~96, 088702], used as an alternative approach to construct evolving networks of interactions formed by the collisions governed by suitable dynamical rules. The system of mobile agents evolves towards a quasi-stationary state which is, apart small fluctuations, well characterized by the density of the system and the residence time of the agents. The residence time defines a collision rate and by varying the collision rate, the system percolates at a critical value, with the emergence of a giant cluster whose critical exponents are the ones of two-dimensional percolation. Further, the degree and clustering coefficient distributions and the average path length show that the network associated with such a system presents non-trivial features which, depending on the collision rule, enables one not only to recover the main properties of standard networks, such as exponential, random and scale-free networks, but also to obtain other topological structures. Namely, we show a specific example where the obtained structure has topological features which characterize accurately the structure and evolution of social networks in different contexts, ranging from networks of acquaintances to networks of sexual contacts.Comment: 12 pages, 17 figure

    Dynamical patterns of epidemic outbreaks in complex heterogeneous networks

    Get PDF
    We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks characterized by diverging degree fluctuations, independently of the structure of the connectivity correlation functions characterizing the population network. By means of analytical and numerical results, we show that the outbreak time evolution follows a precise hierarchical dynamics. Once reached the most highly connected hubs, the infection pervades the network in a progressive cascade across smaller degree classes. Finally, we show the influence of the initial conditions and the relevance of statistical results in single case studies concerning heterogeneous networks. The emerging theoretical framework appears of general interest in view of the recently observed abundance of natural networks with complex topological features and might provide useful insights for the development of adaptive strategies aimed at epidemic containment.Comment: 13 pages, 11 figure

    Opinion and community formation in coevolving networks

    Full text link
    In human societies opinion formation is mediated by social interactions, consequently taking place on a network of relationships and at the same time influencing the structure of the network and its evolution. To investigate this coevolution of opinions and social interaction structure we develop a dynamic agent-based network model, by taking into account short range interactions like discussions between individuals, long range interactions like a sense for overall mood modulated by the attitudes of individuals, and external field corresponding to outside influence. Moreover, individual biases can be naturally taken into account. In addition the model includes the opinion dependent link-rewiring scheme to describe network topology coevolution with a slower time scale than that of the opinion formation. With this model comprehensive numerical simulations and mean field calculations have been carried out and they show the importance of the separation between fast and slow time scales resulting in the network to organize as well-connected small communities of agents with the same opinion.Comment: 10 pages, 5 figures. New inset for Fig. 1 and references added. Submitted to Physical Review

    Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Get PDF
    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks

    On The Application Of Computational Modeling To Complex Food Systems Issues

    Get PDF
    Transdisciplinary food systems research aims to merge insights from multiple fields, often revealing confounding, complex interactions. Computational modeling offers a means to discover patterns and formulate novel solutions to such systems-level problems. The best models serve as hubs—or boundary objects—which ground and unify a collaborative, iterative, and transdisciplinary process of stakeholder engagement. This dissertation demonstrates the application of agent-based modeling, network analytics, and evolutionary computational optimization to the pressing food systems problem areas of livestock epidemiology and global food security. It is comprised of a methodological introduction, an executive summary, three journal-article formatted chapters, and an overarching discussion section. Chapter One employs an agent-based computer model (RUSH-PNBM v.1.1) developed to study the potential impact of the trend toward increased producer specialization on resilience to catastrophic epidemics within livestock production chains. In each run, an infection is introduced and may spread according to probabilities associated with the various modes of contact between hog producer, feed mill, and slaughter plant agents. Experimental data reveal that more-specialized systems are vulnerable to outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outcomes; suggesting that reworking network structures may represent a viable means to increase biosecurity. Chapter Two uses a calibrated, spatially-explicit version of RUSH-PNBM (v.1.2) to model the hog production chains within three U.S. states. Key metrics are calculated after each run, some of which pertain to overall network structures, while others describe each actor’s positionality within the network. A genetic programming algorithm is then employed to search for mathematical relationships between multiple individual indicators that effectively predict each node’s vulnerability. This “meta-metric” approach could be applied to aid livestock epidemiologists in the targeting of biosecurity interventions and may also be useful to study a wide range of complex network phenomena. Chapter Three focuses on food insecurity resulting from the projected gap between global food supply and demand over the coming decades. While no single solution has been identified, scholars suggest that investments into multiple interventions may stack together to solve the problem. However, formulating an effective plan of action requires knowledge about the level of change resulting from a given investment into each wedge, the time before that effect unfolds, the expected baseline change, and the maximum possible level of change. This chapter details an evolutionary-computational algorithm to optimize investment schedules according to the twin goals of maximizing global food security and minimizing cost. Future work will involve parameterizing the model through an expert informant advisory process to develop the existing framework into a practicable food policy decision-support tool
    • …
    corecore