84,604 research outputs found

    Investigation of Communication Constraints in Distributed Multi-Agent Systems

    Get PDF
    Based on a simple flocking model with collision avoidance, a set of investigations of multi-agent system communication constraints have been conducted, including distributed estimation of global features, the influence of jamming, and communication performance optimization. In flocking control, it is necessary to achieve a common velocity among agents and maintain a safe distance between neighboring agents. The local information among agents is exchanged in a distributed fashion to help achieve velocity consensus. A distributed estimation algorithm was recently proposed to estimate the group’s global features based on achieving consensus among agents’ local estimations of such global features. To reduce the communication load, the exchange of local estimations among agents occurs at discrete time instants defined by an event-triggering mechanism. To confirm the effectiveness of the new distributed estimation algorithm, we simulated the algorithm while adopting a simple flocking control technique with collision avoidance. In addition, the effect of jamming on flocking control and the distributed algorithm is studied through computer simulations. Finally, to better exploit the communication channel among agents, we study a recently proposed formation control multi-agent algorithm, which optimizes the inter-agent distance in order to achieve optimum inter-agent communication performance. The study is also conducted through computer simulations, which confirms the effectiveness of the algorithm

    Distributed formation control of multiple unmanned aerial vehicles over time-varying graphs using population games

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a control technique based on distributed population dynamics under time-varying communication graphs for a multi-agent system structured in a leader-follower fashion. Here, the leader agent follows a particular trajectory and the follower agents should track it in a certain organized formation manner. The tracking of the leader can be performed in the position coordinates x; y; and z, and in the yaw angle phi. Additional features are performed with this method: each agent has only partial knowledge of the position of other agents and not necessarily all agents should communicate to the leader. Moreover, it is possible to integrate a new agent into the formation (or for an agent to leave the formation task) in a dynamical manner. In addition, the formation configuration can be changed along the time, and the distributed population-games-based controller achieves the new organization goal accommodating conveniently the information-sharing graph in function of the communication range capabilities of each UAV. Finally, several simulations are presented to illustrate different scenarios, e.g., formation with time-varying communication network, and time-varying formationPeer ReviewedPostprint (author's final draft

    Variance Analysis of Randomized Consensus in Switching Directed Networks

    Get PDF
    In this paper, we study the asymptotic properties of distributed consensus algorithms over switching directed random networks. More specifically, we focus on consensus algorithms over independent and identically distributed, directed Erdos-Renyi random graphs, where each agent can communicate with any other agent with some exogenously specified probability pp. While it is well-known that consensus algorithms over Erdos-Renyi random networks result in an asymptotic agreement over the network, an analytical characterization of the distribution of the asymptotic consensus value is still an open question. In this paper, we provide closed-form expressions for the mean and variance of the asymptotic random consensus value, in terms of the size of the network and the probability of communication pp. We also provide numerical simulations that illustrate our results.Comment: 6 pages, 3 figures, submitted to American Control Conference 201

    COORDINATION OF LEADER-FOLLOWER MULTI-AGENT SYSTEM WITH TIME-VARYING OBJECTIVE FUNCTION

    Get PDF
    This thesis aims to introduce a new framework for the distributed control of multi-agent systems with adjustable swarm control objectives. Our goal is twofold: 1) to provide an overview to how time-varying objectives in the control of autonomous systems may be applied to the distributed control of multi-agent systems with variable autonomy level, and 2) to introduce a framework to incorporate the proposed concept to fundamental swarm behaviors such as aggregation and leader tracking. Leader-follower multi-agent systems are considered in this study, and a general form of time-dependent artificial potential function is proposed to describe the varying objectives of the system in the case of complete information exchange. Using Lyapunov methods, the stability and boundedness of the agents\u27 trajectories under single order and higher order dynamics are analyzed. Illustrative numerical simulations are presented to demonstrate the validity of our results. Then, we extend these results for multi-agent systems with limited information exchange and switching communication topology. The first steps of the realization of an experimental framework have been made with the ultimate goal of verifying the simulation results in practice
    • …
    corecore