790 research outputs found

    Interaction techniques for older adults using touchscreen devices : a literature review

    Get PDF
    International audienceSeveral studies investigated different interaction techniques and input devices for older adults using touchscreen. This literature review analyses the population involved, the kind of tasks that were executed, the apparatus, the input techniques, the provided feedback, the collected data and author's findings and their recommendations. As conclusion, this review shows that age-related changes, previous experience with technologies, characteristics of handheld devices and use situations need to be studied

    Harder and Smoother on Touchscreens? How Interaction Mode Affects Consumer Product Judgment

    Get PDF
    Emerging technologies, such as touchscreen interaction and mid-air gesture-based interaction, are changing the ways we interact with products virtually. However, despite research on how these technologies can be leveraged to improve consumers’ shopping experience, few studies have explored how they affect consumer product judgment. This study explores how two types of gesture-based human-device interaction modes (i.e., touchscreen interaction and mid-air interaction) influence consumers’ judgment on product haptic attributes (i.e., softness and roughness). Results from a lab experiment reveal that interacting with a product via touchscreen, as compared via a mid-air gesture controller, leads to a lower perception of product softness and roughness. Furthermore, such effects are more salient among users with a higher level of need for touch. The results imply that people may mistakenly use the incidental haptic experience gained from interaction device (e.g., the solid and smooth haptic experience a user feels when interacting with touchscreen surface) in product judgment although such experience is not directly related to the product being evaluated. Theoretical contributions, practical implications, and future research are discussed

    Ergonomics of using a mouse or other non-keyboard input device

    Get PDF
    Ten years ago, when the Health and Safety (Display Screen Equipment) Regulations (HSE, 1992) were drafted, the majority of computer interaction occurred with text driven interfaces, using a keyboard. It is not surprising then that the guidance accompanying the DSE Regulations included virtually no mention of the computer mouse or other non-keyboard input devices (NKID). In the intervening period, graphical user interfaces, incorporating ‘windows, icons and pull down menus’ (WIMPS), with a heavy reliance on pointing devices such as the mouse, have transformed user computer interaction. Accompanying this, however, have been increasing anecdotal reports of musculoskeletal health problems affecting NKID users. While the performance aspects of NKID (e.g. accuracy and speed) have been the subject of detailed research, the possible implications for user health have received comparatively little attention. The research presented in this report was commissioned by the Health and Safety Executive to improve understanding of the nature and extent of NKID health problems. This investigation, together with another project examining mobile computing (Heasman et. al., 2000), was intended to contribute to a planned review and updating of the DSE Regulations and accompanying guidance

    Investigation of dynamic three-dimensional tangible touchscreens: Usability and feasibility

    Get PDF
    The ability for touchscreen controls to move from two physical dimensions to three dimensions may soon be possible. Though solutions exist for enhanced tactile touchscreen interaction using vibrotactile devices, no definitive commercial solution yet exists for providing real, physical shape to the virtual buttons on a touchscreen display. Of the many next steps in interface technology, this paper concentrates on the path leading to tangible, dynamic, touchscreen surfaces. An experiment was performed that explores the usage differences between a flat surface touchscreen and one augmented with raised surface controls. The results were mixed. The combination of tactile-visual modalities had a negative effect on task completion time when visual attention was focused on a single task (single target task time increased by 8% and the serial target task time increased by 6%). On the other hand, the dual modality had a positive effect on error rate when visual attention was divided between two tasks (the serial target error rate decreased by 50%). In addition to the experiment, this study also investigated the feasibility of creating a dynamic, three dimensional, tangible touchscreen. A new interface solution may be possible by inverting the traditional touchscreen architecture and integrating emerging technologies such as organic light emitting diode (OLED) displays and electrorheological fluid based tactile pins

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Performance, Characteristics, and Error Rates of Cursor Control Devices for Aircraft Cockpit Interaction

    Get PDF
    This document is the Accepted Manuscript version of the following article: Peter R. Thomas, 'Performance, Characteristics, and Error Rates of Cursor Control Devices for Aircraft Cockpit Interaction', International Journal of Human-Computer Studies, Vol. 109: 41-53, available online 31 August 2017. Under embargo. Embargo end date: 31 August 2018. Published by Elsevier. © 2017 Elsevier Ltd. All rights reserved.This paper provides a comparative performance analysis of a hands-on-throttle-and-stick (HOTAS) cursor control device (CCD) with other suitable CCDs for an aircraft cockpit: an isotonic thumbstick, a trackpad, a trackball, and touchscreen input. The performance and characteristics of these five CCDs were investigated in terms of throughput, movement accuracy, and error rate using the ISO 9241-9 standard task. Results show statistically significant differences (p < 0.001) between three groupings of the devices, with the HOTAS having the lowest throughput (0.7 bits/s) and the touchscreen the highest (3.7 bits/s). Errors for all devices were shown to increase with decreasing target size (p < 0.001) and, to a lesser effect, increasing target distance (p < 0.01). The trackpad was found to be the most accurate of the five devices, being significantly better than the HOTAS fingerstick and touchscreen (p < 0.05) with the touchscreen performing poorly on selecting smaller targets (p < 0.05). These results would be useful to cockpit human-machine interface designers and provides evidence of the need to move away from, or significantly augment the capabilities of, this type of HOTAS CCD in order to improve pilot task throughput in increasingly data-rich cockpits.Peer reviewedFinal Accepted Versio

    Physical interaction with technology: kinesiology as a reference discipline for information systems research

    Get PDF
    In an era of constantly evolving technology, we are using more and more of our bodies to interact with our technological devices. While prior interfaces required small movement of wrists and fingers to work the keyboard and mouse, we now, for example, use multiple fingers on a tactile interface while holding the device with the other hand and walking down the street. All of this additional movement of our bodies changes the dynamics of how we interact with information systems, and consequently impacts our perceptions, motivations, and decisions in everyday tasks. In this paper we present a new reference discipline, kinesiology, that can inform the study of our physical interactions with technology. We also propose two new variables, direct and indirect physicality, that can be used to better understand how this physicality can affect the user\u27s perceptions and behaviors

    Age group differences in performance using diverse input modalities: insertion task evaluation

    Get PDF
    Novel input modalities such as touch, tangibles or gestures try to exploit human's innate skills rather than imposing new learning processes. However, no work has been reported that systematically evaluates how these interfaces influence users' performance, that is, assesses if one interface can be more or less appropriate for interaction regarding: (1) different age groups; and (2) different basic tasks, as content insertion or manipulation. This work presents itself as an exploratory evaluation about whether or not the users' efficiency is indeed influenced by different input modalities and age. We conducted a usability evaluation with 60 subjects to understand how different interfaces may influence the speed and accuracy of three specific age groups (children, young adults and older-adults) when dealing with a basic content insertion task. Four input modalities were considered to perform the task (keyboard, touch, tangibles and gestures) and the methodology was based on usability testing (speed, accuracy and user preference). Overall, results show that there is a statistically significant difference in speed of task completion between the age groups, and there may be indications that the type of interface that is used can indeed influence efficiency in insertion tasks, and not so much other factors like age. Also, the study raises new issues regarding the "old" mouse input versus the "new" input modalities.FCT – Fundação para a CiĂȘncia e a Tecnologia (SFRH/BD/81541/2011)COMPETE: POCI-01-0145- FEDER-007043 and FCT – Fundação para a CiĂȘncia e Tecnologia within the Project Scope: UID/CEC/00319/201

    Effects of Local Latency on Games

    Get PDF
    Video games are a major type of entertainment for millions of people, and feature a wide variety genres. Many genres of video games require quick reactions, and in these games it is critical for player performance and player experience that the game is responsive. One of the major contributing factors that can make games less responsive is local latency — the total delay between input and a resulting change to the screen. Local latency is produced by a combination of delays from input devices, software processing, and displays. Due to latency, game companies spend considerable time and money play-testing their games to ensure the game is both responsive and that the in-game difficulty is reasonable. Past studies have made it clear that local latency negatively affects both player performance and experience, but there is still little knowledge about local latency’s exact effects on games. In this thesis, we address this problem by providing game designers with more knowledge about local latency’s effects. First, we performed a study to examine latency’s effects on performance and experience for popular pointing input devices used with games. Our results show significant differences between devices based on the task and the amount of latency. We then provide design guidelines based on our findings. Second, we performed a study to understand latency’s effects on ‘atoms’ of interaction in games. The study varied both latency and game speed, and found game speed to affect a task’s sensitivity to latency. Third, we used our findings to build a model to help designers quickly identify latency-sensitive game atoms, thus saving time during play-testing. We built and validated a model that predicts errors rates in a game atom based on latency and game speed. Our work helps game designers by providing new insight into latency’s varied effects and by modelling and predicting those effect

    Evaluating secondary input devices to support an automotive touchscreen HMI: a cross-cultural simulator study conducted in the UK and China

    Get PDF
    Touchscreen Human-Machine Interfaces (HMIs) are a well-established and popular choice to provide the primary control interface between driver and vehicle, yet inherently demand some visual attention. Employing a secondary device with the touchscreen may reduce the demand but there is some debate about which device is most suitable, with current manufacturers favouring different solutions and applying these internationally. We present an empirical driving simulator study, conducted in the UK and China, in which 48 participants undertook typical in-vehicle tasks utilising either a touchscreen, rotary-controller, steering-wheel-controls or touchpad. In both the UK and China, the touchscreen was the most preferred/least demanding to use, and the touchpad least preferred/most demanding, whereas the rotary-controller was generally favoured by UK drivers and steering-wheel-controls were more popular in China. Chinese drivers were more excited by the novelty of the technology, and spent more time attending to the devices while driving, leading to an increase in off-road glance time and a corresponding detriment to vehicle control. Even so, Chinese drivers rated devices as easier-to-use while driving, and felt that they interfered less with their driving performance, compared to their UK counterparts. Results suggest that the most effective solution (to maximise performance/acceptance, while minimising visual demand) is to maintain the touchscreen as the primary control interface (e.g. for top-level tasks), and supplement this with a secondary device that is only enabled for certain actions; moreover, different devices may be employed in different cultural markets. Further work is required to explore these recommendations in greater depth (e.g. during extended or real-world testing), and to validate the findings and approach in other cultural contexts
    • 

    corecore