68,281 research outputs found

    Recognizing Emotions Conveyed through Facial Expressions

    Get PDF
    Emotional communication is a key element of habilitation care of persons with dementia. It is, therefore, highly preferable for assistive robots that are used to supplement human care provided to persons with dementia, to possess the ability to recognize and respond to emotions expressed by those who are being cared-for. Facial expressions are one of the key modalities through which emotions are conveyed. This work focuses on computer vision-based recognition of facial expressions of emotions conveyed by the elderly. Although there has been much work on automatic facial expression recognition, the algorithms have been experimentally validated primarily on young faces. The facial expressions on older faces has been totally excluded. This is due to the fact that the facial expression databases that were available and that have been used in facial expression recognition research so far do not contain images of facial expressions of people above the age of 65 years. To overcome this problem, we adopt a recently published database, namely, the FACES database, which was developed to address exactly the same problem in the area of human behavioural research. The FACES database contains 2052 images of six different facial expressions, with almost identical and systematic representation of the young, middle-aged and older age-groups. In this work, we evaluate and compare the performance of two of the existing imagebased approaches for facial expression recognition, over a broad spectrum of age ranging from 19 to 80 years. The evaluated systems use Gabor filters and uniform local binary patterns (LBP) for feature extraction, and AdaBoost.MH with multi-threshold stump learner for expression classification. We have experimentally validated the hypotheses that facial expression recognition systems trained only on young faces perform poorly on middle-aged and older faces, and that such systems confuse ageing-related facial features on neutral faces with other expressions of emotions. We also identified that, among the three age-groups, the middle-aged group provides the best generalization performance across the entire age spectrum. The performance of the systems was also compared to the performance of humans in recognizing facial expressions of emotions. Some similarities were observed, such as, difficulty in recognizing the expressions on older faces, and difficulty in recognizing the expression of sadness. The findings of our work establish the need for developing approaches for facial expression recognition that are robust to the effects of ageing on the face. The scientific results of our work can be used as a basis to guide future research in this direction

    Multi-agent system for selecting images based on the gender and age

    Get PDF
    This paper presents a multi-agent system that is able to search people on a database of images recognizing patterns of facial features on each person, based on the main features of the face (eyes, nose and mouth). Using that multi-agent architecture, the system can do the work faster applying Fisherfaces algorithm for the face recognition and classification. This technology can be used for several purposes like specific ads in each user group to suit better their interests or search for the age and gender of people that usually go to different places like malls or shops

    Interactive and Audience Adaptive Digital Signage Using Real-Time Computer Vision

    Get PDF
    In this paper we present the development of an interactive, content‐aware and cost‐effective digital signage system. Using a monocular camera installed within the frame of a digital signage display, we employ real‐time computer vision algorithms to extract temporal, spatial and demographic features of the observers, which are further used for observer‐specific broadcasting of digital signage content. The number of observers is obtained by the Viola and Jones face detection algorithm, whilst facial images are registered using multi‐view Active Appearance Models. The distance of the observers from the system is estimated from the interpupillary distance of registered faces. Demographic features, including gender and age group, are determined using SVM classifiers to achieve individual observer‐specific selection and adaption of the digital signage broadcasting content. The developed system was evaluated at the laboratory study level and in a field study performed for audience measurement research. Comparison of our monocular localization module with the Kinect stereo‐system reveals a comparable level of accuracy. The facial characterization module is evaluated on the FERET database with 95% accuracy for gender classification and 92% for age group. Finally, the field study demonstrates the applicability of the developed system in real‐life environments

    On the ethnic classification of Pakistani face using deep learning

    Get PDF
    corecore