21 research outputs found

    Enhancing Reproductive Organ Segmentation in Pediatric CT via Adversarial Learning

    Get PDF
    Accurately segmenting organs in abdominal computed tomography (CT) scans is crucial for clinical applications such as pre-operative planning and dose estimation. With the recent advent of deep learning algorithms, many robust frameworks have been proposed for organ segmentation in abdominal CT images. However, many of these frameworks require large amounts of training data in order to achieve high segmentation accuracy. Pediatric abdominal CT images containing reproductive organs are particularly hard to obtain since these organs are extremely sensitive to ionizing radiation. Hence, it is extremely challenging to train automatic segmentation algorithms on organs such as the uterus and the prostate. To address these issues, we propose a novel segmentation network with a built-in auxiliary classifier generative adversarial network (ACGAN) that conditionally generates additional features during training. The proposed CFG-SegNet (conditional feature generation segmentation network) is trained on a single loss function which combines adversarial loss, reconstruction loss, auxiliary classifier loss and segmentation loss. 2.5D segmentation experiments are performed on a custom data set containing 24 female CT volumes containing the uterus and 40 male CT volumes containing the prostate. CFG-SegNet achieves an average segmentation accuracy of 0.929 DSC (Dice Similarity Coefficient) on the prostate and 0.724 DSC on the uterus with 4-fold cross validation. The results show that our network is high-performing and has the potential to precisely segment difficult organs with few available training images

    Bone Age Assessment with less human intervention

    Get PDF
    Biomedical imaging allows doctors to examine the condition of a patient’s organs or tissues without a surgical procedure. Various modalities of imaging techniques have been developed, such as X-radiation (X-ray), Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). For example, the Bone Age Assessment (BAA) evaluates the maturity in infants, children, and adolescents using their hand radiographs. It plays an essential role in diagnosing a patient with growth disorders or endocrine disorders, such that needed treatments could be provided. Computer-aided diagnosis (CAD) systems have been introduced to extract features from regions of interest in this field automatically. Recently, several deep learning methods are proposed to perform automated bone age assessment by learning visual features. This study proposes a BAA model, including image preprocessing procedures and transfer learning with a limited number of annotated samples. The goal is to examine the efficiency of data augmentations by using a publicly available X-ray data set. The model achieves a comparable MAE of 5.8 months, RMSE of 7.3 months, and accuracy (within 1 year) of more than 90% on the data set. We also study whether generating samples by a Generative Adversarial Network could be a valuable technique for training the model and prevent it from overfitting when the samples are insufficient

    Generative Adversarial Network (GAN) for Medical Image Synthesis and Augmentation

    Get PDF
    Medical image processing aided by artificial intelligence (AI) and machine learning (ML) significantly improves medical diagnosis and decision making. However, the difficulty to access well-annotated medical images becomes one of the main constraints on further improving this technology. Generative adversarial network (GAN) is a DNN framework for data synthetization, which provides a practical solution for medical image augmentation and translation. In this study, we first perform a quantitative survey on the published studies on GAN for medical image processing since 2017. Then a novel adaptive cycle-consistent adversarial network (Ad CycleGAN) is proposed. We respectively use a malaria blood cell dataset (19,578 images) and a COVID-19 chest X-ray dataset (2,347 images) to test the new Ad CycleGAN. The quantitative metrics include mean squared error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), universal image quality index (UIQI), spatial correlation coefficient (SCC), spectral angle mapper (SAM), visual information fidelity (VIF), Frechet inception distance (FID), and the classification accuracy of the synthetic images. The CycleGAN and variant autoencoder (VAE) are also implemented and evaluated as comparison. The experiment results on malaria blood cell images indicate that the Ad CycleGAN generates more valid images compared to CycleGAN or VAE. The synthetic images by Ad CycleGAN or CycleGAN have better quality than those by VAE. The synthetic images by Ad CycleGAN have the highest accuracy of 99.61%. In the experiment on COVID-19 chest X-ray, the synthetic images by Ad CycleGAN or CycleGAN have higher quality than those generated by variant autoencoder (VAE). However, the synthetic images generated through the homogenous image augmentation process have better quality than those synthesized through the image translation process. The synthetic images by Ad CycleGAN have higher accuracy of 95.31% compared to the accuracy of the images by CycleGAN of 93.75%. In conclusion, the proposed Ad CycleGAN provides a new path to synthesize medical images with desired diagnostic or pathological patterns. It is considered a new approach of conditional GAN with effective control power upon the synthetic image domain. The findings offer a new path to improve the deep neural network performance in medical image processing

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces
    corecore