96,398 research outputs found

    Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments

    Full text link
    Labeled Faces in the Wild (LFW) database has been widely utilized as the benchmark of unconstrained face verification and due to big data driven machine learning methods, the performance on the database approaches nearly 100%. However, we argue that this accuracy may be too optimistic because of some limiting factors. Besides different poses, illuminations, occlusions and expressions, cross-age face is another challenge in face recognition. Different ages of the same person result in large intra-class variations and aging process is unavoidable in real world face verification. However, LFW does not pay much attention on it. Thereby we construct a Cross-Age LFW (CALFW) which deliberately searches and selects 3,000 positive face pairs with age gaps to add aging process intra-class variance. Negative pairs with same gender and race are also selected to reduce the influence of attribute difference between positive/negative pairs and achieve face verification instead of attributes classification. We evaluate several metric learning and deep learning methods on the new database. Compared to the accuracy on LFW, the accuracy drops about 10%-17% on CALFW.Comment: 10 pages, 9 figure

    Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks

    Full text link
    Generally, facial age variations affect gender classification accuracy significantly, because facial shape and skin texture change as they grow old. This requires re-examination on the gender classification system to consider facial age information. In this paper, we propose Multi-expert Gender Classification on Age Group (MGA), an end-to-end multi-task learning schemes of age estimation and gender classification. First, two types of deep neural networks are utilized; Convolutional Appearance Network (CAN) for facial appearance feature and Deep Geometry Network (DGN) for facial geometric feature. Then, CAN and DGN are integrated by the proposed model integration strategy and fine-tuned in order to improve age and gender classification accuracy. The facial images are categorized into one of three age groups (young, adult and elder group) based on their estimated age, and the system makes a gender prediction according to average fusion strategy of three gender classification experts, which are trained to fit gender characteristics of each age group. Rigorous experimental results conducted on the challenging databases suggest that the proposed MGA outperforms several state-of-art researches with smaller computational cost.Comment: 12 page

    Aff-Wild2: Extending the Aff-Wild Database for Affect Recognition

    Full text link
    Automatic understanding of human affect using visual signals is a problem that has attracted significant interest over the past 20 years. However, human emotional states are quite complex. To appraise such states displayed in real-world settings, we need expressive emotional descriptors that are capable of capturing and describing this complexity. The circumplex model of affect, which is described in terms of valence (i.e., how positive or negative is an emotion) and arousal (i.e., power of the activation of the emotion), can be used for this purpose. Recent progress in the emotion recognition domain has been achieved through the development of deep neural architectures and the availability of very large training databases. To this end, Aff-Wild has been the first large-scale "in-the-wild" database, containing around 1,200,000 frames. In this paper, we build upon this database, extending it with 260 more subjects and 1,413,000 new video frames. We call the union of Aff-Wild with the additional data, Aff-Wild2. The videos are downloaded from Youtube and have large variations in pose, age, illumination conditions, ethnicity and profession. Both database-specific as well as cross-database experiments are performed in this paper, by utilizing the Aff-Wild2, along with the RECOLA database. The developed deep neural architectures are based on the joint training of state-of-the-art convolutional and recurrent neural networks with attention mechanism; thus exploiting both the invariant properties of convolutional features, while modeling temporal dynamics that arise in human behaviour via the recurrent layers. The obtained results show premise for utilization of the extended Aff-Wild, as well as of the developed deep neural architectures for visual analysis of human behaviour in terms of continuous emotion dimensions

    Probabilistic Attribute Tree in Convolutional Neural Networks for Facial Expression Recognition

    Full text link
    In this paper, we proposed a novel Probabilistic Attribute Tree-CNN (PAT-CNN) to explicitly deal with the large intra-class variations caused by identity-related attributes, e.g., age, race, and gender. Specifically, a novel PAT module with an associated PAT loss was proposed to learn features in a hierarchical tree structure organized according to attributes, where the final features are less affected by the attributes. Then, expression-related features are extracted from leaf nodes. Samples are probabilistically assigned to tree nodes at different levels such that expression-related features can be learned from all samples weighted by probabilities. We further proposed a semi-supervised strategy to learn the PAT-CNN from limited attribute-annotated samples to make the best use of available data. Experimental results on five facial expression datasets have demonstrated that the proposed PAT-CNN outperforms the baseline models by explicitly modeling attributes. More impressively, the PAT-CNN using a single model achieves the best performance for faces in the wild on the SFEW dataset, compared with the state-of-the-art methods using an ensemble of hundreds of CNNs.Comment: 10 page

    Deep Learning for Face Recognition: Pride or Prejudiced?

    Full text link
    Do very high accuracies of deep networks suggest pride of effective AI or are deep networks prejudiced? Do they suffer from in-group biases (own-race-bias and own-age-bias), and mimic the human behavior? Is in-group specific information being encoded sub-consciously by the deep networks? This research attempts to answer these questions and presents an in-depth analysis of `bias' in deep learning based face recognition systems. This is the first work which decodes if and where bias is encoded for face recognition. Taking cues from cognitive studies, we inspect if deep networks are also affected by social in- and out-group effect. Networks are analyzed for own-race and own-age bias, both of which have been well established in human beings. The sub-conscious behavior of face recognition models is examined to understand if they encode race or age specific features for face recognition. Analysis is performed based on 36 experiments conducted on multiple datasets. Four deep learning networks either trained from scratch or pre-trained on over 10M images are used. Variations across class activation maps and feature visualizations provide novel insights into the functioning of deep learning systems, suggesting behavior similar to humans. It is our belief that a better understanding of state-of-the-art deep learning networks would enable researchers to address the given challenge of bias in AI, and develop fairer systems

    Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!

    Full text link
    Autoencoders are unsupervised deep learning models used for learning representations. In literature, autoencoders have shown to perform well on a variety of tasks spread across multiple domains, thereby establishing widespread applicability. Typically, an autoencoder is trained to generate a model that minimizes the reconstruction error between the input and the reconstructed output, computed in terms of the Euclidean distance. While this can be useful for applications related to unsupervised reconstruction, it may not be optimal for classification. In this paper, we propose a novel Supervised COSMOS Autoencoder which utilizes a multi-objective loss function to learn representations that simultaneously encode the (i) "similarity" between the input and reconstructed vectors in terms of their direction, (ii) "distribution" of pixel values of the reconstruction with respect to the input sample, while also incorporating (iii) "discriminability" in the feature learning pipeline. The proposed autoencoder model incorporates a Cosine similarity and Mahalanobis distance based loss function, along with supervision via Mutual Information based loss. Detailed analysis of each component of the proposed model motivates its applicability for feature learning in different classification tasks. The efficacy of Supervised COSMOS autoencoder is demonstrated via extensive experimental evaluations on different image datasets. The proposed model outperforms existing algorithms on MNIST, CIFAR-10, and SVHN databases. It also yields state-of-the-art results on CelebA, LFWA, Adience, and IJB-A databases for attribute prediction and face recognition, respectively

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    A Survey of Deep Facial Attribute Analysis

    Full text link
    Facial attribute analysis has received considerable attention when deep learning techniques made remarkable breakthroughs in this field over the past few years. Deep learning based facial attribute analysis consists of two basic sub-issues: facial attribute estimation (FAE), which recognizes whether facial attributes are present in given images, and facial attribute manipulation (FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey of deep facial attribute analysis from the perspectives of both estimation and manipulation. First, we summarize a general pipeline that deep facial attribute analysis follows, which comprises two stages: data preprocessing and model construction. Additionally, we introduce the underlying theories of this two-stage pipeline for both FAE and FAM. Second, the datasets and performance metrics commonly used in facial attribute analysis are presented. Third, we create a taxonomy of state-of-the-art methods and review deep FAE and FAM algorithms in detail. Furthermore, several additional facial attribute related issues are introduced, as well as relevant real-world applications. Finally, we discuss possible challenges and promising future research directions.Comment: submitted to International Journal of Computer Vision (IJCV

    Physical Attribute Prediction Using Deep Residual Neural Networks

    Full text link
    Images taken from the Internet have been used alongside Deep Learning for many different tasks such as: smile detection, ethnicity, hair style, hair colour, gender and age prediction. After witnessing these usages, we were wondering what other attributes can be predicted from facial images available on the Internet. In this paper we tackle the prediction of physical attributes from face images using Convolutional Neural Networks trained on our dataset named FIRW. We crawled around 61, 000 images from the web, then use face detection to crop faces from these real world images. We choose ResNet-50 as our base network architecture. This network was pretrained for the task of face recognition by using the VGG-Face dataset, and we finetune it by using our own dataset to predict physical attributes. Separate networks are trained for the prediction of body type, ethnicity, gender, height and weight; our models achieve the following accuracies for theses tasks, respectively: 84.58%, 87.34%, 97.97%, 70.51%, 63.99%. To validate our choice of ResNet-50 as the base architecture, we also tackle the famous CelebA dataset. Our models achieve an averagy accuracy of 91.19% on CelebA, which is comparable to state-of-the-art approaches

    EmotioNet Challenge: Recognition of facial expressions of emotion in the wild

    Full text link
    This paper details the methodology and results of the EmotioNet challenge. This challenge is the first to test the ability of computer vision algorithms in the automatic analysis of a large number of images of facial expressions of emotion in the wild. The challenge was divided into two tracks. The first track tested the ability of current computer vision algorithms in the automatic detection of action units (AUs). Specifically, we tested the detection of 11 AUs. The second track tested the algorithms' ability to recognize emotion categories in images of facial expressions. Specifically, we tested the recognition of 16 basic and compound emotion categories. The results of the challenge suggest that current computer vision and machine learning algorithms are unable to reliably solve these two tasks. The limitations of current algorithms are more apparent when trying to recognize emotion. We also show that current algorithms are not affected by mild resolution changes, small occluders, gender or age, but that 3D pose is a major limiting factor on performance. We provide an in-depth discussion of the points that need special attention moving forward
    • …
    corecore