11 research outputs found

    Slime mould memristors

    Get PDF
    In laboratory experiments we demonstrate that protoplasmic tubes of acellular slime mould \emph{Physarum polycephalum} show current versus voltage profiles consistent with memristive systems and that the effect is due to the living protoplasm of the mould. This complements previous findings on memristive properties of other living systems (human skin and blood) and contributes to development of self-growing bio-electronic circuits. Distinctive asymmetric V-I curves which were occasionally observed when the internal current is on the same order as the driven current, are well-modelled by the concept of active memristors

    Two-dimensional brain microtubule structures behave as memristive devices

    Get PDF
    Microtubules (MTs) are cytoskeletal structures that play a central role in a variety of cell functions including cell division and cargo transfer. MTs are also nonlinear electrical transmission lines that produce and conduct electrical oscillations elicited by changes in either electric field and/or ionic gradients. The oscillatory behavior of MTs requires a voltage-sensitive gating mechanism to enable the electrodiffusional ionic movement through the MT wall. Here we explored the electrical response of non-oscillating rat brain MT sheets to square voltage steps. To ascertain the nature of the possible gating mechanism, the electrical response of non-oscillating rat brain MT sheets (2D arrays of MTs) to square pulses was analyzed under voltage-clamping conditions. A complex voltage-dependent nonlinear charge movement was observed, which represented the summation of two events. The first contribution was a small, saturating, voltage-dependent capacitance with a maximum charge displacement in the range of 4 fC/ÎŒm2. A second, major contribution was a non-saturating voltage-dependent charge transfer, consistent with the properties of a multistep memristive device. The memristive capabilities of MTs could drive oscillatory behavior, and enable voltage-driven neuromorphic circuits and architectures within neurons.Fil: Cantero, MarĂ­a del RocĂ­o. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Perez, Paula L.. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Scarinci, MarĂ­a Noelia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; Argentin

    Organic electrochemical networks for biocompatible and implantable machine learning: Organic bioelectronic beyond sensing

    Get PDF
    How can the brain be such a good computer? Part of the answer lies in the astonishing number of neurons and synapses that process electrical impulses in parallel. Part of it must be found in the ability of the nervous system to evolve in response to external stimuli and grow, sharpen, and depress synaptic connections. However, we are far from understanding even the basic mechanisms that allow us to think, be aware, recognize patterns, and imagine. The brain can do all this while consuming only around 20 Watts, out-competing any human-made processor in terms of energy-efficiency. This question is of particular interest in a historical era and technological stage where phrases like machine learning and artificial intelligence are more and more widespread, thanks to recent advances produced in the field of computer science. However, brain-inspired computation is today still relying on algorithms that run on traditional silicon-made, digital processors. Instead, the making of brain-like hardware, where the substrate itself can be used for computation and it can dynamically update its electrical pathways, is still challenging. In this work, I tried to employ organic semiconductors that work in electrolytic solutions, called organic mixed ionic-electronic conductors (OMIECs) to build hardware capable of computation. Moreover, by exploiting an electropolymerization technique, I could form conducting connections in response to electrical spikes, in analogy to how synapses evolve when the neuron fires. After demonstrating artificial synapses as a potential building block for neuromorphic chips, I shifted my attention to the implementation of such synapses in fully operational networks. In doing so, I borrowed the mathematical framework of a machine learning approach known as reservoir computing, which allows computation with random (neural) networks. I capitalized my work on demonstrating the possibility of using such networks in-vivo for the recognition and classification of dangerous and healthy heartbeats. This is the first demonstration of machine learning carried out in a biological environment with a biocompatible substrate. The implications of this technology are straightforward: a constant monitoring of biological signals and fluids accompanied by an active recognition of the presence of malign patterns may lead to a timely, targeted and early diagnosis of potentially mortal conditions. Finally, in the attempt to simulate the random neural networks, I faced difficulties in the modeling of the devices with the state-of-the-art approach. Therefore, I tried to explore a new way to describe OMIECs and OMIECs-based devices, starting from thermodynamic axioms. The results of this model shine a light on the mechanism behind the operation of the organic electrochemical transistors, revealing the importance of the entropy of mixing and suggesting new pathways for device optimization for targeted applications

    The Fourth Industrial Revolution and the Recolonisation of Africa

    Get PDF
    This book argues that the fourth industrial revolution, the process of accelerated automation of traditional manufacturing and industrial practices via digital technology, will serve to further marginalise Africa within the international community. In this book, the author argues that the looting of Africa that started with human capital and then natural resources, now continues unabated via data and digital resources looting. Developing on the notion of "Coloniality of Data", the fourth industrial revolutionis postulated as the final phase which will conclude Africa’s peregrination towards recolonisation. Global cartels, networks of coloniality, and tech multi-national corporations have turned Big Data into capital, which is left unguarded in Africa as the continent lacks the strong institutions necessary to regulate the mining of data. Written from a decolonial perspective, this book employs three analytical pillars of coloniality of power, knowledge and being. It concludes with an assessment of what could be done to help to turn the fourth industrial revolution from a curse into a resource. Highlighting the crippling continuation of asymmetrical global power relations, this book will be an important read for researchers of African studies, politics and international political economy

    The Fourth Industrial Revolution and the Recolonisation of Africa

    Get PDF
    This book argues that the fourth industrial revolution, the process of accelerated automation of traditional manufacturing and industrial practices via digital technology, will serve to further marginalise Africa within the international community. In this book, the author argues that the looting of Africa that started with human capital and then natural resources, now continues unabated via data and digital resources looting. Developing on the notion of "Coloniality of Data", the fourth industrial revolutionis postulated as the final phase which will conclude Africa’s peregrination towards recolonisation. Global cartels, networks of coloniality, and tech multi-national corporations have turned Big Data into capital, which is left unguarded in Africa as the continent lacks the strong institutions necessary to regulate the mining of data. Written from a decolonial perspective, this book employs three analytical pillars of coloniality of power, knowledge and being. It concludes with an assessment of what could be done to help to turn the fourth industrial revolution from a curse into a resource. Highlighting the crippling continuation of asymmetrical global power relations, this book will be an important read for researchers of African studies, politics and international political economy

    Collected Papers (on various scientific topics), Volume XII

    Get PDF
    This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick GonzĂĄlez-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, JoĂŁo Alcione Sganderla Figueiredo, Jorge Fernando Goyes GarcĂ­a, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez GĂłmez, Sharon Dinarza Álvarez GĂłmez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero MartĂ­nez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo GonzĂĄlez Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo RodrĂ­guez, JesĂșs Estupiñån Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva VĂĄzquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, ƞtefan VlăduĆŁescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.‬‬‬‬‬

    The Largest Unethical Medical Experiment in Human History

    Get PDF
    This monograph describes the largest unethical medical experiment in human history: the implementation and operation of non-ionizing non-visible EMF radiation (hereafter called wireless radiation) infrastructure for communications, surveillance, weaponry, and other applications. It is unethical because it violates the key ethical medical experiment requirement for “informed consent” by the overwhelming majority of the participants. The monograph provides background on unethical medical research/experimentation, and frames the implementation of wireless radiation within that context. The monograph then identifies a wide spectrum of adverse effects of wireless radiation as reported in the premier biomedical literature for over seven decades. Even though many of these reported adverse effects are extremely severe, the true extent of their severity has been grossly underestimated. Most of the reported laboratory experiments that produced these effects are not reflective of the real-life environment in which wireless radiation operates. Many experiments do not include pulsing and modulation of the carrier signal, and most do not account for synergistic effects of other toxic stimuli acting in concert with the wireless radiation. These two additions greatly exacerbate the severity of the adverse effects from wireless radiation, and their neglect in current (and past) experimentation results in substantial under-estimation of the breadth and severity of adverse effects to be expected in a real-life situation. This lack of credible safety testing, combined with depriving the public of the opportunity to provide informed consent, contextualizes the wireless radiation infrastructure operation as an unethical medical experiment
    corecore