9,173 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Foundations for the Future: Emerging Trends in Foundation Philanthropy

    Get PDF
    Paper presented at the Forum on Philanthropy, Public Policy and the Economy, January 19-20, 2000.Foundations are currently experiencing an unprecedented period of change. Historically, change in the foundation sector has been created from within or in response to legislative and regulatory changes. At the cusp of the 21st century, however, foundations face a barrage of simultaneous external forces that are redefining the world in which philanthropy operates. Never before in the history of the philanthropic sector has so much change taken place, at such a rapid pace, outside of the control of the foundations themselves. This paper presents the societal trends that are affecting philanthropy, analyzes the impact they are having on foundation programs and operations, and discusses ways that foundations might reinvent themselves to capitalize on the unique opportunities present in today's environment

    In silico prediction of skin metabolism and its implication in toxicity assessment

    Get PDF
    Skin, being the largest organ of the body, represents an important route of exposure, not only for the abundance of chemicals present in the environment, but also for products designed for topical application such as drugs and personal care products. Determining whether such incidental or intentional exposure poses a risk to human health requires consideration of temporal concentration, both externally and internally, in addition to assessing the chemical’s intrinsic hazard. In order to elicit a toxic response in vivo the chemical must reach its site of action in sufficient concentration, as determined by its absorption, distribution, metabolism and elimination (ADME) profile. Whilst absorption and distribution into and through skin layers have been studied for decades, only more recently has skin metabolism become a subject of intense research, now recognised as playing a key role in both toxification and detoxification processes. The majority of information on metabolic processes, however, has generally been acquired via studies performed on the liver. This paper outlines strategies that may be used to leverage current knowledge, gained from liver metabolism studies, to inform predictions for skin metabolism through understanding the differences in the enzymatic landscapes between skin and liver. The strategies outlined demonstrate how an array of in silico tools may be used in concert to resolve a significant challenge in predicting toxicity following dermal exposure. The use of in vitro methods for determining skin metabolism, both to provide further experimental data for modelling and to verify predictions is also discussed. Herein, information on skin metabolism is placed within the context of toxicity prediction for risk assessment, which requires consideration of both exposure and hazard of parent chemicals and their metabolites

    Predicting drug metabolism: experiment and/or computation?

    Get PDF
    Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.This is the accepted manuscript of a paper published in Nature Reviews Drug Discovery (Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G, Nature Reviews Drug Discovery, 2015, 14, 387–404, doi:10.1038/nrd4581). The final version is available at http://dx.doi.org/10.1038/nrd458

    Review on recent advances in information mining from big consumer opinion data for product design

    Get PDF
    In this paper, based on more than ten years' studies on this dedicated research thrust, a comprehensive review concerning information mining from big consumer opinion data in order to assist product design is presented. First, the research background and the essential terminologies regarding online consumer opinion data are introduced. Next, studies concerning information extraction and information utilization of big consumer opinion data for product design are reviewed. Studies on information extraction of big consumer opinion data are explained from various perspectives, including data acquisition, opinion target recognition, feature identification and sentiment analysis, opinion summarization and sampling, etc. Reviews on information utilization of big consumer opinion data for product design are explored in terms of how to extract critical customer needs from big consumer opinion data, how to connect the voice of the customers with product design, how to make effective comparisons and reasonable ranking on similar products, how to identify ever-evolving customer concerns efficiently, and so on. Furthermore, significant and practical aspects of research trends are highlighted for future studies. This survey will facilitate researchers and practitioners to understand the latest development of relevant studies and applications centered on how big consumer opinion data can be processed, analyzed, and exploited in aiding product design

    Development of predictive models for catalyst development

    Get PDF
    Abstract. This work was done as a part of the BioSPRINT project, which aims to improve biorefinery operations through process intensification and to replace fossil-based polymers with new bio-based products. The goal was to identify machine learned (ML) models that will accelerate the catalyst identification with high-throughput (HTP) screening methods, identify non-obvious formulations and allow catalyst tuning for different feedstock compositions. Maximum activity for conversion of complex sugar mixtures with optimal selectivity towards the key products of interest is desired. In the literature part of the thesis, ML was studied in general, where the focus was on different variable selection methods and modeling techniques, more specifically on data-driven modeling. Furthermore, modeling in catalysis was discussed with focus on ML in catalysis. Catalyst screening and selection, descriptor modeling and selection, and predictive modeling in catalysis were studied. In the experimental part, focus was on developing ML models that predict catalyst performance with relevant descriptors. Dataset for hydrogenation of 5-ethoxymethylfurfural with simple bimetal catalysts, including main metals and promoters, was used as ML model input with the addition of catalyst descriptors found in the literature. Four different responses were used in the experiments: selectivity and conversion with two different solvents. Methods used in the experimental part were discussed in detail, where data collection, preprocessing, variable selection, modeling and model validation were considered. Reference models without variable selection were first identified. Secondly, regularization algorithms were used to identify models. Finally, models with variable subsets obtained with regularization algorithms were identified. The effect of cross-validation was also studied. In general, good modeling results were obtained with boosted ensemble tree methods, support vector machine (SVM) methods and Gaussian process regression (GPR) methods. Lasso regression turned out to be the best variable selection method. Good results were obtained with the descriptors found in the literature. It was also shown, that fairly good results can be obtained with only two variables in the studied case. Promoter variables were not considered nearly as important as main metals with variable selection algorithms. Even though the modeling results were good, the variable selection methods were almost purely data-driven, and the actual relevance of the variables cannot be guaranteed. In the future work, optimization should be studied with the goal of finding catalysts that maximize catalyst performance values based on the model predictions. Also, extrapolation capabilities of the models need to be studied and improved. The studied methods can be easily implemented to other datasets. In the BioSPRINT project, experimental results related to the dehydration reaction of C5 and C6 sugars with simple metal catalysts will be obtained and used with the studied methods.Ennustavien mallien laatiminen katalyytin valmistuksen tehostamiseksi. Tiivistelmä. Tämä työ tehtiin osana BioSPRINT-projektia, jonka tavoitteena on kehittää biojalostamoiden toimintaa parantamalla niiden prosessitehokkuutta ja korvata fossiilipohjaiset polymeerit uusilla biopohjaisilla tuotteilla. Työn tavoitteena oli muodostaa koneoppimista hyödyntämällä mallit, jotka nopeuttavat optimaalisten katalyyttien löytämistä tehoseulonnan (high-throughput (HTP) screening) avulla, auttavat identifioimaan vaikeasti löydettäviä katalyyttiyhdistelmiä ja mahdollistavat katalyytin valinnan eri lähtöainekoostumuksilla. Tavoitteena on maksimoida monimutkaisten sokeriyhdisteiden konversio ja selektiivisyys halutuiksi tuotteiksi. Työn kirjallisuusosiossa perehdyttiin koneoppimiseen yleisellä tasolla, missä pääpaino oli muuttujanvalintamenetelmissä ja datapohjaisissa mallinnusmenetelmissä. Lisäksi kirjallisuusosassa tutkittiin mallinnuksen käyttöä katalyysissä, missä pääpaino oli koneoppimisen käytössä. Työssä tarkasteltiin myös katalyyttien seulontaa ja valintaa, laskennallisten muuttujien (deskriptorien) määrittelyä ja valintaa, sekä ennustavan mallinnuksen käyttöä katalyysissä. Kokeellisessa osiossa painopiste oli koneoppimista hyödyntävien mallien muodostuksessa, jotka ennustavat katalyyttien suorituskykyä oleellisilla deskriptoreilla. Data-aineistona käytettiin 5-etoksimetyylifurfuraalin hydrausreaktion tuloksia yksinkertaisilla kaksikomponenttisilla metallikatalyyteillä, jotka sisältävät päämetallin ja promoottorin. Data-aineistoa täydennettiin kirjallisuudesta löytyvillä katalyyttien deskriptoreilla ja käytettiin koneoppimista hyödyntävien mallien sisääntulona. Tutkimuksissa käytettiin neljää eri vastemuuttujaa: selektiivisyyttä ja konversiota kahdella eri liuottimella. Kokeellisessa osiossa käytetyt menetelmät käytiin läpi perusteellisesti huomioon ottaen data-aineiston keräämisen, esikäsittelyn, muuttujanvalinnan, mallinnuksen ja mallin validoinnin. Ensin referenssimallit identifioitiin. Tämän jälkeen regularisaatioalgoritmeilla suoritettiin mallinnus. Lopuksi mallinnus suoritettiin käyttämällä muuttujajoukkoja, jotka oli valittu käyttäen regularisaatioalgoritmeja. Myös ristivalidoinnin vaikutusta tutkittiin. Yleisesti hyvät mallinnustulokset saavutettiin boosted ensemble tree -tekniikalla, tukivektorikoneella ja Gaussian process -regressiolla. Lasso-menetelmä todettiin parhaaksi muuttujanvalinta-algoritmiksi. Hyvät tulokset saavutettiin kirjallisuudesta löytyvien deskriptorien avulla. Tutkimuksissa todettiin myös, että hyvät mallinnustulokset voidaan saavuttaa kyseisessä tutkimustapauksessa jopa vain kahdella muuttujalla. Päämetalleja kuvaavien muuttujien merkitsevyys todettiin paljon suuremmaksi kuin promoottorien vastaavien muuttujien. Saatavia mallinnustuloksia tarkasteltaessa täytyy huomioida, että muuttujanvalinta oli melkein täysin datapohjainen eikä muuttujien varsinaista merkitsevyyttä voida taata. Jatkossa mallien ennustuksia voidaan hyödyntää optimoinnissa, jossa tavoitteena on etsiä katalyyttiyhdistelmä, joka maksimoi katalyyttien suorituskyvyn. Myös mallin ekstrapolointikykyä täytyy tutkia ja kehittää. Tutkittavat menetelmät ovat helposti sovellettavissa myös muille samantyylisille data-aineistoille. BioSPRINT-projektista saadaan tulevaisuudessa käytettäväksi viisi- ja kuusihiilisten sokerien dehydraatioon perustuva data-aineisto yksinkertaisilla metallikatalyyteillä, jota tullaan käyttämään jatkotutkimuksissa

    Evaluating and Optimizing Online Advertising: Forget the click, but there are good proxies

    Get PDF
    A main goal of online display advertising is to drive purchases (etc.) following ad engagement. However, there often are too few purchase conversions for campaign evaluation and optimization, due to low conversion rates, cold start periods, and long purchase cycles (e.g., with brand advertising). This paper presents results across dozens of experiments within individual online display advertising campaigns, each comparing different 'proxies' for measuring success. Measuring success is critical both for evaluating and comparing different targeting strategies, and for designing and optimizing the strategies in the first place (for example, via predictive modeling). Proxies are necessary because data on the actual goals of advertising (e.g., purchasing, increased brand affinity, etc.) often are scarce, missing, or fundamentally difficult or impossible to observe. The paper presents bad news and good news. The most commonly cited and used proxy for success is a click on an advertisement. The bad news is that across a large number of campaigns, clicks are not good proxies for evaluation nor for optimization: buyers do not resemble clickers. The good news is that an alternative sort of proxy performs remarkably well: observed visits to the brand's website. Specifically, predictive models built based on brand site visits do a remarkably good job of predicting which browsers will purchase. The practical bottom line: evaluating campaigns and optimizing based on clicks seems wrongheaded; however, there is an easy and attractive alternative|use a well-chosen site visit proxy instead.m6d research; NYU Stern School of Busines

    Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms.

    Get PDF
    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure-activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein-ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance.JK, MJW, JT, PJB, AB and RCG thank Unilever for funding

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft
    corecore