339 research outputs found

    A Dynamic Resource Manager with Effective Resource Isolation Based on Workload Types in Virtualized Cloud Computing Environments

    Get PDF
    To use computing resources for processing parallel algorithms on demand, cloud computing has been widely used since it is able to scale in response to load increases and decreases. Typically, cloud computing providers offer virtual machines to cloud users with static configurations, and these configurations are not changed until virtual machines are shutting down. To accelerate parallel processing computations in cloud computing environments, we design and implement a dynamic resource manager by isolating resources based on workload types. To avoid unnecessary context switching and increase CPUs affinity, our dynamic resource manager determines whether vCPU to physical CPU core pinning is required. If so, the VM’s vCPUs are pinned by our dynamic resource manager, which can guarantee the resource and performance isolation. With our proposed resource manager for virtual machines, we can achieve a performance boost and load balancing at the same time. Performance results show that our proposed method outperforms the default scheduler of Xen about 36.2% by reducing the number of context switching for VMs

    Optimizing egalitarian performance in the side-effects model of colocation for data center resource management

    Full text link
    In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but tasks' performance deteriorates, as colocated tasks compete for shared resources. As tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [18] we proposed a new combinatorial optimization model that uses two parameters of a task - its size and its type - to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: maximizing the worst-off performance. This problem generalizes the classic makespan minimization on multiple processors (P||Cmax). We prove that polynomially-solvable variants of multiprocessor scheduling are NP-hard and hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Algorithms aware of jobs' types lead to better performance compared with algorithms solving P||Cmax. The notion of type enables us to model degeneration of performance caused by using standard combinatorial optimization methods. Types add a layer of additional complexity. However, our results - approximation algorithms and good average-case performance - show that types can be handled efficiently.Comment: Author's version of a paper published in Euro-Par 2017 Proceedings, extends the published paper with addtional results and proof

    MORPHOSYS: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the IaaS provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MorphoSys: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of workloads. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. The results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MorphoSys.First author draf

    Optimizing egalitarian performance when colocating tasks with types for cloud data center resource management

    Get PDF
    International audienceIn data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but the performance of the tasks deteriorates, as the colocated tasks compete for shared resources. Since the tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [26], [27] we proposed a new combinatorial optimization model that uses two parameters of a task-its size and its type-to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: the aim is to optimize the performance of the worst-off task. This problem generalizes the classic makespan minimization on multiple processors (P||C max). We prove that polynomially-solvable variants of P||C max are NP-hard for this generalization, and that the problem is hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Compared with baseline algorithms solving P||C max , our proposed algorithms aware of the types of the jobs lead to significantly better tasks' performance. The notion of type enables us to extend standard combinatorial optimization methods to handle degradation of performance caused by colocation. Types add a layer of additional complexity. However, our results-approximation algorithms and good average-case performance-show that types can be handled efficiently
    corecore