208 research outputs found

    Affine invariant interacting Langevin dynamics for Bayesian inference

    Get PDF
    We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of non-degeneracy and ergodicity. Furthermore, we study its connections to diffusions on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free implementation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem

    Affine Invariant Interacting Langevin Dynamics for Bayesian Inference

    Get PDF
    We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of nondegeneracy and ergodicity. Furthermore, we study its connections to diffusion on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free approximation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem

    Affine invariant interacting Langevin dynamics for Bayesian inference

    Get PDF
    We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of non-degeneracy and ergodicity. Furthermore, we study its connections to diffusion on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free approximation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem

    Ensemble-based gradient inference for particle methods in optimization and sampling

    Full text link
    We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions {from a given ensemble of particles}. Pointwise evaluation {V(xi)}i\{V(x^i)\}_i of some potential VV in an ensemble {xi}i\{x^i\}_i contains implicit information about first or higher order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference -- EGI). We suggest to use this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as Consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants, in particular the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings and to speed up the collapse at the end of optimization dynamics.} The code for the numerical examples in this manuscript can be found in the paper's Github repository (https://github.com/MercuryBench/ensemble-based-gradient.git)

    Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance

    Full text link
    Sampling a probability distribution with an unknown normalization constant is a fundamental problem in computational science and engineering. This task may be cast as an optimization problem over all probability measures, and an initial distribution can be evolved to the desired minimizer dynamically via gradient flows. Mean-field models, whose law is governed by the gradient flow in the space of probability measures, may also be identified; particle approximations of these mean-field models form the basis of algorithms. The gradient flow approach is also the basis of algorithms for variational inference, in which the optimization is performed over a parameterized family of probability distributions such as Gaussians, and the underlying gradient flow is restricted to the parameterized family. By choosing different energy functionals and metrics for the gradient flow, different algorithms with different convergence properties arise. In this paper, we concentrate on the Kullback-Leibler divergence after showing that, up to scaling, it has the unique property that the gradient flows resulting from this choice of energy do not depend on the normalization constant. For the metrics, we focus on variants of the Fisher-Rao, Wasserstein, and Stein metrics; we introduce the affine invariance property for gradient flows, and their corresponding mean-field models, determine whether a given metric leads to affine invariance, and modify it to make it affine invariant if it does not. We study the resulting gradient flows in both probability density space and Gaussian space. The flow in the Gaussian space may be understood as a Gaussian approximation of the flow. We demonstrate that the Gaussian approximation based on the metric and through moment closure coincide, establish connections between them, and study their long-time convergence properties showing the advantages of affine invariance.Comment: 82 pages, 8 figures (Welcome any feedback!

    Less interaction with forward models in Langevin dynamics

    Get PDF
    Ensemble methods have become ubiquitous for the solution of Bayesian inference problems. State-of-the-art Langevin samplers such as the Ensemble Kalman Sampler (EKS), Affine Invariant Langevin Dynamics (ALDI) or its extension using weighted covariance estimates rely on successive evaluations of the forward model or its gradient. A main drawback of these methods hence is their vast number of required forward calls as well as their possible lack of convergence in the case of more involved posterior measures such as multimodal distributions. The goal of this paper is to address these challenges to some extend. First, several possible adaptive ensemble enrichment strategies that successively enlarge the number of particles in the underlying Langevin dynamics are discusses that in turn lead to a significant reduction of the total number of forward calls. Second, analytical consistency guarantees of the ensemble enrichment method are provided for linear forward models. Third, to address more involved target distributions, the method is extended by applying adapted Langevin dynamics based on a homotopy formalism for which convergence is proved. Finally, numerical investigations of several benchmark problems illustrates the possible gain of the proposed method, comparing it to state-of-the-art Langevin samplers

    Particle Metropolis-Hastings using gradient and Hessian information

    Full text link
    Particle Metropolis-Hastings (PMH) allows for Bayesian parameter inference in nonlinear state space models by combining Markov chain Monte Carlo (MCMC) and particle filtering. The latter is used to estimate the intractable likelihood. In its original formulation, PMH makes use of a marginal MCMC proposal for the parameters, typically a Gaussian random walk. However, this can lead to a poor exploration of the parameter space and an inefficient use of the generated particles. We propose a number of alternative versions of PMH that incorporate gradient and Hessian information about the posterior into the proposal. This information is more or less obtained as a byproduct of the likelihood estimation. Indeed, we show how to estimate the required information using a fixed-lag particle smoother, with a computational cost growing linearly in the number of particles. We conclude that the proposed methods can: (i) decrease the length of the burn-in phase, (ii) increase the mixing of the Markov chain at the stationary phase, and (iii) make the proposal distribution scale invariant which simplifies tuning.Comment: 27 pages, 5 figures, 2 tables. The final publication is available at Springer via: http://dx.doi.org/10.1007/s11222-014-9510-
    • …
    corecore