241 research outputs found

    A wavelet based method for affine invariant 2D object recognition

    Get PDF
    Recognizing objects that have undergone certain viewing transformations is an important problem in the field of computer vision. Most current research has focused almost exclusively on single aspects of the problem, concentrating on a few geometric transformations and distortions. Probably, the most important one is the affine transformation which may be considered as an approximation to perspective transformation. Many algorithms were developed for this purpose. Most popular ones are Fourier descriptors and moment based methods. Another powerful tool to recognize affine transformed objects, is the invariants of implicit polynomials. These three methods are usually called as traditional methods. Wavelet-based affine invariant functions are recent contributions to the solution of the problem. This method is better at recognition and more robust to noise compared to other methods. These functions mostly rely on the object contour and undecimated wavelet transform. In this thesis, a technique is developed to recognize objects undergoing a general affine transformation. Affine invariant functions are used, based on on image projections and high-pass filtered images of objects at projection angles . Decimated Wavelet Transform is used instead of undecimated Wavelet Transform. We compared our method with the an another wavelet based affine invariant function, Khalil-Bayoumi and also with traditional methods

    Computing global shape measures

    Get PDF
    Global shape measures are a convenient way to describe regions. They are generally simple and efficient to extract, and provide an easy means for high level tasks such as classification as well as helping direct low-level computer vision processes such as segmentation. In this chapter a large selection of global shape measures (some from the standard literature as well as other newer methods) are described and demonstrated

    Detecting Symmetries of Rational Plane and Space Curves

    Get PDF
    This paper addresses the problem of determining the symmetries of a plane or space curve defined by a rational parametrization. We provide effective methods to compute the involution and rotation symmetries for the planar case. As for space curves, our method finds the involutions in all cases, and all the rotation symmetries in the particular case of Pythagorean-hodograph curves. Our algorithms solve these problems without converting to implicit form. Instead, we make use of a relationship between two proper parametrizations of the same curve, which leads to algorithms that involve only univariate polynomials. These algorithms have been implemented and tested in the Sage system.Comment: 19 page

    Automatic visual recognition using parallel machines

    Get PDF
    Invariant features and quick matching algorithms are two major concerns in the area of automatic visual recognition. The former reduces the size of an established model database, and the latter shortens the computation time. This dissertation, will discussed both line invariants under perspective projection and parallel implementation of a dynamic programming technique for shape recognition. The feasibility of using parallel machines can be demonstrated through the dramatically reduced time complexity. In this dissertation, our algorithms are implemented on the AP1000 MIMD parallel machines. For processing an object with a features, the time complexity of the proposed parallel algorithm is O(n), while that of a uniprocessor is O(n2). The two applications, one for shape matching and the other for chain-code extraction, are used in order to demonstrate the usefulness of our methods. Invariants from four general lines under perspective projection are also discussed in here. In contrast to the approach which uses the epipolar geometry, we investigate the invariants under isotropy subgroups. Theoretically speaking, two independent invariants can be found for four general lines in 3D space. In practice, we show how to obtain these two invariants from the projective images of four general lines without the need of camera calibration. A projective invariant recognition system based on a hypothesis-generation-testing scheme is run on the hypercube parallel architecture. Object recognition is achieved by matching the scene projective invariants to the model projective invariants, called transfer. Then a hypothesis-generation-testing scheme is implemented on the hypercube parallel architecture
    • …
    corecore