608 research outputs found

    Cryptographic properties of modified AES-like S-boxes

    Get PDF
    Using AES-like S-boxes (generated using finite field inversion) provides an excellent starting point for generating S-boxes with some specific design criteria dictated by the implemented cipher and still maintaining all the most commonly recognized cryptographic criteria to a large extent. This paper presents the results of statistical analysis of fulfilment of those basic cryptographic criteria by the modified AES-like S-boxes that do have neither equivalence nor cycles

    Parameterized Hash Functions

    Get PDF
    In this paper we describe a family of highly parameterized hash functions. This parameterization results in great flexibility between performance and security of the algorithm. The three basic functions, HaF-256, HaF-512 and HaF-1024 constitute this hash function family. Lengths of message digests are 256, 512 and 1024 bits respectively. The paper discusses the details of functions structure. The method used to generate function S-box is also described in detail

    Equivalence of DES and AES Algorithm with Cellular Automata

    Get PDF
    In this paper we present the equivalence of the operations involved in DES and AES algorithm with operations of cellular automata. We identify all the permutation and substitution operations involved in DES and AES algorithm and compare these operations with the cellular automata rules. Then we find that permutation operations involved in DES and AES are equivalent to linear cellular automata rules providing diffusion property of cryptography whereas substitution operations involved in DES and AES are equivalent to non linear cellular automata rules providing the confusion property of cryptography. Hence instead of using operations involved in DES and AES algorithm, we can apply linear as well as non-linear cellular automata rules in cryptography for better security and parallel processing

    Secure Block Ciphers - Cryptanalysis and Design

    Get PDF

    Measuring Performances of a White-Box Approach in the IoT Context

    Get PDF
    The internet of things (IoT) refers to all the smart objects that are connected to other objects, devices or servers and that are able to collect and share data, in order to "learn" and improve their functionalities. Smart objects suffer from lack of memory and computational power, since they are usually lightweight. Moreover, their security is weakened by the fact that smart objects can be placed in unprotected environments, where adversaries are able to play with the symmetric-key algorithm used and the device on which the cryptographic operations are executed. In this paper, we focus on a family of white-box symmetric ciphers substitution-permutation network (SPN)box, extending and improving our previous paper on the topic presented at WIDECOM2019. We highlight the importance of white-box cryptography in the IoT context, but also the need to have a fast black-box implementation (server-side) of the cipher. We show that, modifying an internal layer of SPNbox, we are able to increase the key length and to improve the performance of the implementation. We measure these improvements (a) on 32/64-bit architectures and (b) in the IoT context by encrypting/decrypting 10,000 payloads of lightweight messaging protocol Message Queuing Telemetry Transport (MQTT)

    Current implementation of advance encryption standard (AES) S-Box

    Get PDF
    Although the attack on cryptosystem is still not severe, the development of the scheme is stillongoing especially for the design of S-Box. Two main approach has beenused, which areheuristic method and algebraic method. Algebraic method as in current AES implementationhas been proven to be the most secure S-Box design to date. This review paper willconcentrate on two kinds of method of constructing AES S-Box, which are algebraic approachand heuristic approach. The objective is to review a method of constructing S-Box, which arecomparable or close to the original construction of AES S-Box especially for the heuristicapproach. Finally, all the listed S-Boxes from these two methods will be compared in terms oftheir security performance which is nonlinearity and differential uniformity of the S-Box. Thefinding may offer the potential approach to develop a new S-Box that is better than theoriginal one.Keywords: block cipher; AES; S-Bo

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)−F(x)D_a F(x)=F(x+a)-F(x), a∈G∖{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters
    • …
    corecore