28 research outputs found

    A Comprehensive Survey on Tools for Effective Alzheimer’s Disease Detection

    Get PDF
    Neuroimaging is considered as a valuable technique to study the structure and function of the human brain. Rapid advancement in medical imaging technologies has contributed significantly towards the development of neuroimaging tools. These tools focus on extracting and enhancing the relevant information from brain images, which facilitates neuroimaging experts to make better and quick decision for diagnosing enormous number of patients without requiring manual interventions. This paper describes the general outline of such tools including image file formats, ability to handle data from multiple modalities, supported platforms, implemented language, advantages and disadvantages. This brief review of tools gives a clear outlook for researchers to utilize existing techniques to handle the image data obtained from different modalities and focus further for improving and developing advanced tools

    Statistical shape analysis of neuroanatomical structures based on spherical wavelet transformation

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2008.Includes bibliographical references.Evidence suggests that morphological changes of neuroanatomical structures may reflect abnormalities in neurodevelopment, or relate to a variety of disorders, such as schizophrenia and Alzheimer's disease (AD). Advances in high-resolution Magnetic Resonance Imaging (MRI) techniques allow us to study these alterations of brain structures in vivo. Previous work in studying the shape variations of brain structures has provided additional localized information compared with traditional volume-based study. However, challenges remain in finding an accurate shape presentation and conducting shape analysis with sound statistical principles. In this work, we develop methods for automatically extracting localized and multi-scale shape features and conducting statistical shape analysis of neuroanatomical structures obtained from MR images. We first develop a procedure to extract multi-scale shape features of brain structures using biorthogonal spherical wavelets. Using this wavelet-based shape representation, we build multi-scale shape models and study the localized cortical folding variations in a normal population using Principal Component Analysis (PCA). We then build a shape-based classification framework for detecting pathological changes of cortical surfaces using advanced classification methods, such as predictive Automatic Relevance Determination (pred-ARD), and demonstrate promising results in patient/control group comparison studies. Thirdly, we develop a nonlinear temporal model for studying the temporal order and regional difference of cortical folding development based on this shape representation. Furthermore, we develop a shape-guided segmentation method to improve the segmentation of sub-cortical structures, such as hippocampus, by using shape constraints obtained in the wavelet domain.(cont.) Finally, we improve upon the proposed wavelet-based shape representation by adopting a newly developed over-complete spherical wavelet transformation and demonstrate its utility in improving the accuracy and stability of shape representations. By using these shape representations and statistical analysis methods, we have demonstrated promising results in localizing shape changes of neuroanatomical structures related to aging, neurological diseases, and neurodevelopment at multiple spatial scales. Identification of these shape changes could potentially lead to more accurate diagnoses and improved understanding of neurodevelopment and neurological diseases.by Peng Yu.Ph.D

    Geometric and statistical models for multi-object shape analysis

    Get PDF
    Shape analysis of multi-object complexes is important in many applications because it reveals additional information of interest over single-object shape analysis. For example, in medical applications where multiple structures in the human body often deform together, joint shape analysis of those interrelated structures facilitates robust and efficient algorithms. Specifically, shape correlation of functionally related structures allows us to understand the common underlying biological factors (e.g., disease). Also, beyond the within-object shape relations, between-object shape relations provide additional understanding of multi-object complexes. Despite the need of multi-object shape analysis, this field has been challenged by many issues. For instance, shape variation is often coupled with pose and size variation between objects. Moreover, within-object shape variation is often coupled with between-object shape variation. These issues have prevented us from sufficiently understanding multi-object complexes. To address the issues, this dissertation proposes geometric and statistical methods for joint analysis of multi-object complexes. In particular, I base my research on skeletal representations (i.e., s-reps) that are designed to provide intrinsic shape features with good correspondences. This dissertation improves the previous method fitting an s-rep to an object such that the fitted s-reps have desirable geometric and statistical properties. This improvement allows me to analyze intrinsic shape correlation between objects. To this end, this dissertation extends the existing statistical method to effectively extract joint shape variation, leading to a method called Non-EUclidean Joint and Individual Variation Explained (NEUJIVE). NEUJIVE shows notable robustness in analyzing multi-block non-Euclidean data with different variability. Last, to decouple within- and between-object shape variation, I develop non-branching linking structures for statistical analysis of between-object shape features. To capture geometric features that are insensitive to pose variation of multi-object complexes, this dissertation extends fitted local frames on s-reps to affine frames. The fitted local affine frames show special advantage because they free multi-object shape analysis from pre-alignment. The driving problem of the proposed methods involves classifying and testing hypotheses on the shape of the hippocampus-caudate pairs between an autism group and a non-autism group. Also, this dissertation discusses other potential applications that can benefit from the proposed methods.Doctor of Philosoph

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that oïŹ€ers, in addition to all the functionality speciïŹcally described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient

    3D shape matching and registration : a probabilistic perspective

    Get PDF
    Dense correspondence is a key area in computer vision and medical image analysis. It has applications in registration and shape analysis. In this thesis, we develop a technique to recover dense correspondences between the surfaces of neuroanatomical objects over heterogeneous populations of individuals. We recover dense correspondences based on 3D shape matching. In this thesis, the 3D shape matching problem is formulated under the framework of Markov Random Fields (MRFs). We represent the surfaces of neuroanatomical objects as genus zero voxel-based meshes. The surface meshes are projected into a Markov random field space. The projection carries both geometric and topological information in terms of Gaussian curvature and mesh neighbourhood from the original space to the random field space. Gaussian curvature is projected to the nodes of the MRF, and the mesh neighbourhood structure is projected to the edges. 3D shape matching between two surface meshes is then performed by solving an energy function minimisation problem formulated with MRFs. The outcome of the 3D shape matching is dense point-to-point correspondences. However, the minimisation of the energy function is NP hard. In this thesis, we use belief propagation to perform the probabilistic inference for 3D shape matching. A sparse update loopy belief propagation algorithm adapted to the 3D shape matching is proposed to obtain an approximate global solution for the 3D shape matching problem. The sparse update loopy belief propagation algorithm demonstrates significant efficiency gain compared to standard belief propagation. The computational complexity and convergence property analysis for the sparse update loopy belief propagation algorithm are also conducted in the thesis. We also investigate randomised algorithms to minimise the energy function. In order to enhance the shape matching rate and increase the inlier support set, we propose a novel clamping technique. The clamping technique is realized by combining the loopy belief propagation message updating rule with the feedback from 3D rigid body registration. By using this clamping technique, the correct shape matching rate is increased significantly. Finally, we investigate 3D shape registration techniques based on the 3D shape matching result. Based on the point-to-point dense correspondences obtained from the 3D shape matching, a three-point based transformation estimation technique is combined with the RANdom SAmple Consensus (RANSAC) algorithm to obtain the inlier support set. The global registration approach is purely dependent on point-wise correspondences between two meshed surfaces. It has the advantage that the need for orientation initialisation is eliminated and that all shapes of spherical topology. The comparison of our MRF based 3D registration approach with a state-of-the-art registration algorithm, the first order ellipsoid template, is conducted in the experiments. These show dense correspondence for pairs of hippocampi from two different data sets, each of around 20 60+ year old healthy individuals

    Deformable MRI to Transrectal Ultrasound Registration for Prostate Interventions Using Deep Learning

    Get PDF
    RÉSUMÉ: Le cancer de la prostate est l’un des principaux problĂšmes de santĂ© publique dans le monde. Un diagnostic prĂ©coce du cancer de la prostate pourrait jouer un rĂŽle vital dans le traitement des patients. Les procĂ©dures de biopsie sont utilisĂ©es Ă  des fins de diagnostic. À cet Ă©gard, l’échographie transrectale (TRUS) est considĂ©rĂ©e comme un standard pour l’imagerie de la prostate lors d’une biopsie ou d’une curiethĂ©rapie. Cette technique d’imagerie est relativement peu coĂ»teuse, peut scanner l’organe en temps rĂ©el et est sans radiation. Ainsi, les scans TRUS sont utilisĂ©s pour guider les cliniciens sur l’emplacement d’une tumeur Ă  l’intĂ©rieur de la prostate. Le dĂ©fi majeur rĂ©side dans le fait que les images TRUS ont une faible rĂ©solution et qualitĂ© d’image. Il est difficile de distinguer l’emplacement exact de la tumeur et l’étendue de la maladie. De plus, l’organe de la prostate subit d’importantes variations de forme au cours d’une intervention de la prostate, ce qui rend l’identification de la tumeur encore plus difficile.----------ABSTRACT: Prostate cancer is one of the major public health issues in the world. An accurate and early diagnosis of prostate cancer could play a vital role in the treatment of patients. Biopsy procedures are used for diagnosis purposes. In this regard, Transrectal Ultrasound (TRUS) is considered a standard for imaging the prostate during a biopsy or brachytherapy procedure. This imaging technique is comparatively low-cost, can scan the organ in real-time, and is radiation free. Thus, TRUS scans are used to guide the clinicians about the location of a tumor inside the prostate organ. The major challenge lies in the fact that TRUS images have low resolution and quality. This makes it difficult to distinguish the exact tumor location and the extent of the disease. In addition, the prostate organ undergoes important shape variations during a prostate intervention procedure, which makes the tumor identification even harder
    corecore