579 research outputs found

    From homogeneous to fractal normal and tumorous microvascular networks in the brain

    Get PDF
    We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power- spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale- invariant fractal properties on a small scale from 1.4 lm up to 40 to 65 lm. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange

    Anatomy Transfer

    Get PDF
    Characters with precise internal anatomy are important in film and visual effects, as well as in medical applications. We propose the first semi-automatic method for creating anatomical structures, such as bones, muscles, viscera and fat tissues. This is done by transferring a reference anatomical model from an input template to an arbitrary target character, only defined by its boundary representation (skin). The fat distribution of the target character needs to be specified. We can either infer this information from MRI data, or allow the users to express their creative intent through a new editing tool. The rest of our method runs automatically: it first transfers the bones to the target character, while maintaining their structure as much as possible. The bone layer, along with the target skin eroded using the fat thickness information, are then used to define a volume where we map the internal anatomy of the source model using harmonic (Laplacian) deformation. This way, we are able to quickly generate anatomical models for a large range of target characters, while maintaining anatomical constraints

    3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    Get PDF
    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling

    Determination of volumetric variations and coastal changes due to historical volcanic eruptions using historical maps and remote-sensing at Deception Island (West-Antarctica)

    Get PDF
    Deception Island is an active volcano in the South Shetland Islands (Antarctic). Its eruptions have been recorded since 1842, the last episode occurring between 1967 and 1970. This study quantifies the geomorphological changes which have taken place as a result of historical volcanic activity on the island. The linear and volumetric results obtained for the Telefon Bay and Craters of 1970s where the Surtseyan eruption took place in 1967 are presented in detail.Ministerio de EducaciĂłn y Ciencia CGL2005-07589-C03- 01/ANTMinisterio de EducaciĂłn y Ciencia CGL2004-21547-EMinisterio de EducaciĂłn y Ciencia CGL2007-28768-E/ANTMinisterio de EducaciĂłn y Ciencia CTM2009-0725
    • …
    corecore