6,708 research outputs found

    Affective facial expressions recognition for human-robot interaction

    Get PDF
    Affective facial expression is a key feature of nonverbal behaviour and is considered as a symptom of an internal emotional state. Emotion recognition plays an important role in social communication: human-to-human and also for humanto-robot. Taking this as inspiration, this work aims at the development of a framework able to recognise human emotions through facial expression for human-robot interaction. Features based on facial landmarks distances and angles are extracted to feed a dynamic probabilistic classification framework. The public online dataset Karolinska Directed Emotional Faces (KDEF) [1] is used to learn seven different emotions (e.g. angry, fearful, disgusted, happy, sad, surprised, and neutral) performed by seventy subjects. A new dataset was created in order to record stimulated affect while participants watched video sessions to awaken their emotions, different of the KDEF dataset where participants are actors (i.e. performing expressions when asked to). Offline and on-the-fly tests were carried out: leave-one-out cross validation tests on datasets and on-the-fly tests with human-robot interactions. Results show that the proposed framework can correctly recognise human facial expressions with potential to be used in human-robot interaction scenario

    Music-aided affective interaction between human and service robot

    Get PDF
    This study proposes a music-aided framework for affective interaction of service robots with humans. The framework consists of three systems, respectively, for perception, memory, and expression on the basis of the human brain mechanism. We propose a novel approach to identify human emotions in the perception system. The conventional approaches use speech and facial expressions as representative bimodal indicators for emotion recognition. But, our approach uses the mood of music as a supplementary indicator to more correctly determine emotions along with speech and facial expressions. For multimodal emotion recognition, we propose an effective decision criterion using records of bimodal recognition results relevant to the musical mood. The memory and expression systems also utilize musical data to provide natural and affective reactions to human emotions. For evaluation of our approach, we simulated the proposed human-robot interaction with a service robot, iRobiQ. Our perception system exhibited superior performance over the conventional approach, and most human participants noted favorable reactions toward the music-aided affective interaction.open0

    Towards the development of affective facial expression recognition for human-robot interaction

    Get PDF
    Affective facial expression is a key feature of non-verbal behavior and is considered as a symptom of an internal emotional state. Emotion recognition plays an important role in social communication: human-human and also for human-robot interaction. This work aims at the development of a framework able to recognise human emotions through facial expression for human-robot interaction. Simple features based on facial landmarks distances and angles are extracted to feed a dynamic probabilistic classification framework. The public online dataset Karolinska Directed Emotional Faces (KDEF) [12] is used to learn seven different emotions (e.g. Angry, fearful, disgusted, happy, sad, surprised, and neutral) performed by seventy subjects. Offline and on-the-fly tests were carried out: leave-one-out cross validation tests using the dataset and on-the-fly tests during human-robot interactions. Preliminary results show that the proposed framework can correctly recognise human facial expressions with potential to be used in human-robot interaction scenarios

    Towards multimodal affective expression:merging facial expressions and body motion into emotion

    Get PDF
    Affect recognition plays an important role in human everyday life and it is a substantial way of communication through expressions. Humans can rely on different channels of information to understand the affective messages communicated with others. Similarly, it is expected that an automatic affect recognition system should be able to analyse different types of emotion expressions. In this respect, an important issue to be addressed is the fusion of different channels of expression, taking into account the relationship and correlation across different modalities. In this work, affective facial and bodily motion expressions are addressed as channels for the communication of affect, designed as an emotion recognition system. A probabilistic approach is used to combine features from two modalities by incorporating geometric facial expression features and body motion skeleton-based features. Preliminary results show that the presented approach has potential for automatic emotion recognition and it can be used for human robot interaction

    Detecting emotions during a memory training assisted by a social robot for individuals with Mild Cognitive Impairment (MCI)

    Get PDF
    The attention towards robot-assisted therapies (RAT) had grown steadily in recent years particularly for patients with dementia. However, rehabilitation practice using humanoid robots for individuals with Mild Cognitive Impairment (MCI) is still a novel method for which the adherence mechanisms, indications and outcomes remain unclear. An effective computing represents a wide range of technological opportunities towards the employment of emotions to improve human-computer interaction. Therefore, the present study addresses the effectiveness of a system in automatically decode facial expression from video-recorded sessions of a robot-assisted memory training lasted two months involving twenty-one participants. We explored the robot’s potential to engage participants in the intervention and its effects on their emotional state. Our analysis revealed that the system is able to recognize facial expressions from robot-assisted group therapy sessions handling partially occluded faces. Results indicated reliable facial expressiveness recognition for the proposed software adding new evidence base to factors involved in Human-Robot Interaction (HRI). The use of a humanoid robot as a mediating tool appeared to promote the engagement of participants in the training program. Our findings showed positive emotional responses for females. Tasks affects differentially affective involvement. Further studies should investigate the training components and robot responsiveness

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents
    corecore