1,097 research outputs found

    A Multimodal Approach for Monitoring Driving Behavior and Emotions

    Get PDF
    Studies have indicated that emotions can significantly be influenced by environmental factors; these factors can also significantly influence drivers’ emotional state and, accordingly, their driving behavior. Furthermore, as the demand for autonomous vehicles is expected to significantly increase within the next decade, a proper understanding of drivers’/passengers’ emotions, behavior, and preferences will be needed in order to create an acceptable level of trust with humans. This paper proposes a novel semi-automated approach for understanding the effect of environmental factors on drivers’ emotions and behavioral changes through a naturalistic driving study. This setup includes a frontal road and facial camera, a smart watch for tracking physiological measurements, and a Controller Area Network (CAN) serial data logger. The results suggest that the driver’s affect is highly influenced by the type of road and the weather conditions, which have the potential to change driving behaviors. For instance, when the research defines emotional metrics as valence and engagement, results reveal there exist significant differences between human emotion in different weather conditions and road types. Participants’ engagement was higher in rainy and clear weather compared to cloudy weather. More-over, engagement was higher on city streets and highways compared to one-lane roads and two-lane highways

    A user experience‐based toolset for automotive human‐machine interface technology development

    Get PDF
    The development of new automotive Human-Machine Interface (HMI) technologies must consider the competing and often conflicting demands of commercial value, User Experience (UX) and safety. Technology innovation offers manufacturers the opportunity to gain commercial advantage in a competitive and crowded marketplace, leading to an increase in the features and functionality available to the driver. User response to technology influences the perception of the brand as a whole, so it is important that in-vehicle systems provide a high-quality user experience. However, introducing new technologies into the car can also increase accident risk. The demands of usability and UX must therefore be balanced against the requirement for driver safety. Adopting a technology-focused business strategy carries a degree of risk, as most innovations fail before they reach the market. Obtaining clear and relevant information on the UX and safety of new technologies early in their development can help to inform and support robust product development (PD) decision making, improving product outcomes. In order to achieve this, manufacturers need processes and tools to evaluate new technologies, providing customer-focused data to drive development. This work details the development of an Evaluation Toolset for automotive HMI technologies encompassing safety-related functional metrics and UX measures. The Toolset consists of four elements: an evaluation protocol, based on methods identified from the Human Factors, UX and Sensory Science literature; a fixed-base driving simulator providing a context-rich, configurable evaluation environment, supporting both hardware and software-based technologies; a standardised simulation scenario providing a repeatable basis for technology evaluations, allowing comparisons across multiple technologies and studies; and a technology scorecard that collates and presents evaluation data to support PD decision making processes

    Implicit personalization in driving assistance: State-of-the-art and open issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With the consideration of driving preferences and driver characteristics, these systems become more acceptable and trustworthy. This article presents a survey on recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, benefits of personalization, application prospects, and future focal points. Both relevant driving datasets and open issues about personalized driving assistance are discussed to facilitate future research. By creating an organized categorization of the field, we hope that this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the application of these techniques within the driving automation community</h2

    MEASURING DUAL TASK COST USING THE PERFORMANCE OPERATING CHARACTERISTIC: THE EFFECT OF EMOTIONAL WORDS ON ONE'S FUNCTIONAL FIELD OF VIEW

    Get PDF
    Discusses design elements that should be utilized for optimal measurement of dual task performance, and reviews literature suggesting that these elements are underutilized. Participants seem to be able to effectively "tune out" one or the other task in a dual task paradigm, though traditional analyses and POC analyses converge to inform us that under these experimental conditions (which may not require adequate cognitive load), UFOV performance is not as greatly impacted by concurrent verbal tasks as pilot data and theory suggest. While smaller than expected, these dual task costs have implications in an applied setting, as 19% of subjects exhibited UFOV scores under dual task conditions that would predict more than double the risk of injurious accident. Finally, highly arousing negatively valent verbal stimuli may lead to greatest interference with visual attention performance

    Classification of Cognitive Load and Expertise for Adaptive Simulation using Deep Multitask Learning

    Full text link
    Simulations are a pedagogical means of enabling a risk-free way for healthcare practitioners to learn, maintain, or enhance their knowledge and skills. Such simulations should provide an optimum amount of cognitive load to the learner and be tailored to their levels of expertise. However, most current simulations are a one-type-fits-all tool used to train different learners regardless of their existing skills, expertise, and ability to handle cognitive load. To address this problem, we propose an end-to-end framework for a trauma simulation that actively classifies a participant's level of cognitive load and expertise for the development of a dynamically adaptive simulation. To facilitate this solution, trauma simulations were developed for the collection of electrocardiogram (ECG) signals of both novice and expert practitioners. A multitask deep neural network was developed to utilize this data and classify high and low cognitive load, as well as expert and novice participants. A leave-one-subject-out (LOSO) validation was used to evaluate the effectiveness of our model, achieving an accuracy of 89.4% and 96.6% for classification of cognitive load and expertise, respectively.Comment: 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    • 

    corecore