18 research outputs found

    Deep affect prediction in-the-wild: Aff-wild database and challenge, deep architectures, and beyond

    Get PDF
    Automatic understanding of human affect using visual signals is of great importance in everyday human–machine interac- tions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished using latent continuous dimensions (e.g., the circumplex model of affect). Valence (i.e., how positive or negative is an emo- tion) and arousal (i.e., power of the activation of the emotion) constitute popular and effective representations for affect. Nevertheless, the majority of collected datasets this far, although containing naturalistic emotional states, have been captured in highly controlled recording conditions. In this paper, we introduce the Aff-Wild benchmark for training and evaluating affect recognition algorithms. We also report on the results of the First Affect-in-the-wild Challenge (Aff-Wild Challenge) that was recently organized in conjunction with CVPR 2017 on the Aff-Wild database, and was the first ever challenge on the estimation of valence and arousal in-the-wild. Furthermore, we design and extensively train an end-to-end deep neural architecture which performs prediction of continuous emotion dimensions based on visual cues. The proposed deep learning architecture, AffWildNet, includes convolutional and recurrent neural network layers, exploiting the invariant properties of convolutional features, while also modeling temporal dynamics that arise in human behavior via the recurrent layers. The AffWildNet produced state-of-the-art results on the Aff-Wild Challenge. We then exploit the AffWild database for learning features, which can be used as priors for achieving best performances both for dimensional, as well as categorical emo- tion recognition, using the RECOLA, AFEW-VA and EmotiW 2017 datasets, compared to all other methods designed for the same goal. The database and emotion recognition models are available at http://ibug.doc.ic.ac.uk/resources/first-affect-wild-challenge

    Affect recognition & generation in-the-wild

    Get PDF
    Affect recognition based on a subject’s facial expressions has been a topic of major research in the attempt to generate machines that can understand the way subjects feel, act and react. In the past, due to the unavailability of large amounts of data captured in real-life situations, research has mainly focused on controlled environments. However, recently, social media and platforms have been widely used. Moreover, deep learning has emerged as a means to solve visual analysis and recognition problems. This Ph.D. Thesis exploits these advances and makes significant contributions for affect analysis and recognition in-the-wild. We tackle affect analysis and recognition as a dual knowledge generation problem: i) we create new, large and rich in-the-wild databases and ii) we design and train novel deep neural architectures that are able to analyse affect over these databases and to successfully generalise their performance on other datasets. At first, we present the creation of Aff-Wild database annotated according to valence-arousal and an end-to-end CNN-RNN architecture, AffWildNet. Then we use AffWildNet as a robust prior for dimensional and categorical affect recognition and extend it by extracting low-/mid-/high-level latent information and analysing this via multiple RNNs. Additionally, we propose a novel loss function for DNN-based categorical affect recognition. Next, we generate Aff-Wild2, the first database containing annotations for all main behavior tasks: estimate Valence-Arousal; classify into Basic Expressions; detect Action Units. We develop multi-task and multi-modal extensions of AffWildNet by fusing these tasks and propose a novel holistic approach that utilises all existing databases with non-overlapping annotations and couples them through co-annotation and distribution matching. Finally, we present an approach for valence-arousal, or basic expressions’ facial affect synthesis. We generate an image with a given affect, or a sequence of images with evolving affect, by annotating a 4-D database and utilising a 3-D morphable model.Open Acces

    Leveraging TCN and Transformer for effective visual-audio fusion in continuous emotion recognition

    Full text link
    Human emotion recognition plays an important role in human-computer interaction. In this paper, we present our approach to the Valence-Arousal (VA) Estimation Challenge, Expression (Expr) Classification Challenge, and Action Unit (AU) Detection Challenge of the 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). Specifically, we propose a novel multi-modal fusion model that leverages Temporal Convolutional Networks (TCN) and Transformer to enhance the performance of continuous emotion recognition. Our model aims to effectively integrate visual and audio information for improved accuracy in recognizing emotions. Our model outperforms the baseline and ranks 3 in the Expression Classification challenge.Comment: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW

    Deep affect prediction in-the-wild: aff-wild database and challenge, deep architectures, and beyond

    Get PDF
    Automatic understanding of human affect using visual signals is of great importance in everyday human–machine interactions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished using latent continuous dimensions (e.g., the circumplex model of affect). Valence (i.e., how positive or negative is an emotion) and arousal (i.e., power of the activation of the emotion) constitute popular and effective representations for affect. Nevertheless, the majority of collected datasets this far, although containing naturalistic emotional states, have been captured in highly controlled recording conditions. In this paper, we introduce the Aff-Wild benchmark for training and evaluating affect recognition algorithms. We also report on the results of the First Affect-in-the-wild Challenge (Aff-Wild Challenge) that was recently organized in conjunction with CVPR 2017 on the Aff-Wild database, and was the first ever challenge on the estimation of valence and arousal in-the-wild. Furthermore, we design and extensively train an end-to-end deep neural architecture which performs prediction of continuous emotion dimensions based on visual cues. The proposed deep learning architecture, AffWildNet, includes convolutional and recurrent neural network layers, exploiting the invariant properties of convolutional features, while also modeling temporal dynamics that arise in human behavior via the recurrent layers. The AffWildNet produced state-of-the-art results on the Aff-Wild Challenge. We then exploit the AffWild database for learning features, which can be used as priors for achieving best performances both for dimensional, as well as categorical emotion recognition, using the RECOLA, AFEW-VA and EmotiW 2017 datasets, compared to all other methods designed for the same goal. The database and emotion recognition models are available at http://ibug.doc.ic.ac.uk/resources/first-affect-wild-challenge

    TempT: Temporal consistency for Test-time adaptation

    Full text link
    We introduce Temporal consistency for Test-time adaptation (TempT) a novel method for test-time adaptation on videos through the use of temporal coherence of predictions across sequential frames as a self-supervision signal. TempT is an approach with broad potential applications in computer vision tasks including facial expression recognition (FER) in videos. We evaluate TempT performance on the AffWild2 dataset. Our approach focuses solely on the unimodal visual aspect of the data and utilizes a popular 2D CNN backbone in contrast to larger sequential or attention-based models used in other approaches. Our preliminary experimental results demonstrate that TempT has competitive performance compared to the previous years reported performances and its efficacy provides a compelling proof-of-concept for its use in various real-world applications.Comment: 7 Pages, 3 figure

    PLM-IPE: A Pixel-Landmark Mutual Enhanced Framework for Implicit Preference Estimation

    Get PDF
    In this paper, we are interested in understanding how customers perceive fashion recommendations, in particular when observing a proposed combination of garments to compose an outfit. Automatically understanding how a suggested item is perceived, without any kind of active engagement, is in fact an essential block to achieve interactive applications. We propose a pixel-landmark mutual enhanced framework for implicit preference estimation, named PLM-IPE, which is capable of inferring the user's implicit preferences exploiting visual cues, without any active or conscious engagement. PLM-IPE consists of three key modules: pixel-based estimator, landmark-based estimator and mutual learning based optimization. The former two modules work on capturing the implicit reaction of the user from the pixel level and landmark level, respectively. The last module serves to transfer knowledge between the two parallel estimators. Towards evaluation, we collected a real-world dataset, named SentiGarment, which contains 3,345 facial reaction videos paired with suggested outfits and human labeled reaction scores. Extensive experiments show the superiority of our model over state-of-the-art approaches
    corecore