7,792 research outputs found

    Evolving artificial terrains with automated genetic terrain programing

    Get PDF
    La industria del videojuego afronta en la actualidad un gran reto: mantener el coste del desarrollo de los proyectos bajo control a medida que estos crecen y se hacen más complejos. La creación de los contenidos de los juegos, que incluye el modelado de personajes, mapas y niveles, texturas, efectos sonoros, etc, representa una parte fundamental del costo final de producción. Por eso, la industria está cada vez más interesada en la utilización de métodos procedurales de generación automática de contenidos. Sin embargo, crear y afinar los métodos procedurales no es una tarea trivial. En esta memoria, se describe un método procedural basado en Programación Genética, que permite la generación automática de terrenos para videojuegos. Los terrenos presentan características estéticas, y no requieren ningún tipo de parametrización para definir su aspecto. Así, el ahorro de tiempo y la reducción de costes en el proceso de producción es notable. Para conseguir los objetivos, se utiliza Programación Genética de Terrenos. La primera implementación de GTP utilizó Evolución Interactiva, en que la presencia del usuario que guía el proceso evolutivo es imprescindible. A pesar de los buenos resultados, el método está limitado por la fatiga del usuario (común en los métodos interactivos). Para resolver esta cuestión se desarrolla un nuevo modelo de GTP en el que el proceso de búsqueda es completamente automático, y dirigido por una función de aptitudo. La función considera accesibilidad de los terrenos y perímetros de los obstáculos. Los resultados obtenidos se incluyeron como parte de un videojuego real.Nowadays video game industry is facing a big challenge: keep costs under control as games become bigger and more complex. Creation of game content, such as character models, maps, levels, textures, sound effects and so on, represent a big slice of total game production cost. Hence, video game industry is increasingly turning to procedural content generation to amplify the cost-effectiveness of video game designers' efforts. However, creating and fine tunning procedural methods for automated content generation is a time consuming task. In this thesis we detail a Genetic Programming based procedural content technique to generate procedural terrains. Those terrains present aesthetic appeal and do not require any parametrization to control its look. Thus, allowing to save time and help reducing production costs. To accomplish these features we devised the Genetic Terrain Programming (GTP) technique. The first implementation of GTP used an Interactive Evolutionary Computation (IEC) approach, were a user guides the evolutionary process. In spite of the good results achieved this way, this approach was limited by user fatigue (common in IEC systems). To address this issue a second version of GTP was developed where the search is automated, being guided by a direct fitness function. That function is composed by two morphological metrics: terrain accessibility and obstacle edge length. The combination of the two metrics allowed us remove the human factor form the evolutionary process and to find a wide range of aesthetic and fit terrains. Procedural terrains produced by GTP are already used in a real video game.Ministerio de Educación y Ciencia (TIN2007-68083-C02-01); (TIN2008-05941); (TIN2011-28627-C04) Junta de Extremadura (GRU-09105); (GR10029) Junta de Andalucía (TIC-6083

    Breeding terrains with genetic terrain programming: the evolution of terrain generators

    Get PDF
    Although a number of terrain generation techniques have been proposed during the last few years, all of them have some key constraints. Modelling techniques depend highly upon designer’s skills, time, and effort to obtain acceptable results, and cannot be used to automatically generate terrains. The simpler methods allow only a narrow variety of terrain types and offer little control on the outcome terrain. The Genetic Terrain Programming technique, based on evolutionary design with Genetic Programming, allows designers to evolve terrains according to their aesthetic feelings or desired features. This technique evolves Terrain Programmes (TPs) that are capable of generating a family of terrains—different terrains that consistently present the same morphological characteristics. This paper presents a study about the persistence of morphological characteristics of terrains generated with different resolutions by a given TP. Results show that it is possible to use low resolutions during the evolutionary phase without compromising the outcome, and that terrain macrofeatures are scale invariant

    Evolucionando terrenos artificiales con programación genética automatizada de terrenos

    Get PDF
    Tese de Doutoramento apresentada à Universidad de Extremadura.Nowadays video game industry is facing a big challenge: keep costs under control as games become bigger and more complex. Creation of game content, such as character models, maps, levels, textures, sound effects and so on, represent a big slice of total game production cost. Hence, video game industry is increasingly turning to procedural content generation to amplify the cost-effectiveness of the efforts of video game designers. However, creating and fine tunning procedural methods for automated content generation is a time consuming task. In this thesis we detail a Genetic Programming based procedural content technique to generate procedural terrains. Those terrains present aesthetic appeal and do not require any parametrization to control its look. Thus, allowing to save time and help reducing production costs. To accomplish these features we devised the Genetic Terrain Programming (GTP) technique. The first implementation of GTP used an Interactive Evolutionary Computation (IEC) approach, were a user guides the evolutionary process. In spite of the good results achieved this way, this approach was limited by user fatigue (a common trait of IEC systems). To address this issue a second version of GTP was developed where the search is automated, being guided by a direct fitness function. That function is composed by the weighted sum of two morphological metrics: terrain accessibility and obstacle edge length. The combination of the two metrics allowed us remove the human factor form the evolutionary process and to find a wide range of aesthetic and fit terrains. Procedural terrains produced by this technique are already in use in a real video game

    Evolving artificial terrains with automated genetic terrain programing

    Get PDF
    La industria del videojuego afronta en la actualidad un gran reto: mantener el coste del desarrollo de los proyectos bajo control a medida que estos crecen y se hacen más complejos. La creación de los contenidos de los juegos, que incluye el modelado de personajes, mapas y niveles, texturas, efectos sonoros, etc, representa una parte fundamental del costo final de producción. Por eso, la industria está cada vez más interesada en la utilización de métodos procedurales de generación automática de contenidos. Sin embargo, crear y afinar los métodos procedurales no es una tarea trivial. En esta memoria, se describe un método procedural basado en Programación Genética, que permite la generación automática de terrenos para videojuegos. Los terrenos presentan características estéticas, y no requieren ningún tipo de parametrización para definir su aspecto. Así, el ahorro de tiempo y la reducción de costes en el proceso de producción es notable. Para conseguir los objetivos, se utiliza Programación Genética de Terrenos. La primera implementación de GTP utilizó Evolución Interactiva, en que la presencia del usuario que guía el proceso evolutivo es imprescindible. A pesar de los buenos resultados, el método está limitado por la fatiga del usuario (común en los métodos interactivos). Para resolver esta cuestión se desarrolla un nuevo modelo de GTP en el que el proceso de búsqueda es completamente automático, y dirigido por una función de aptitudo. La función considera accesibilidad de los terrenos y perímetros de los obstáculos. Los resultados obtenidos se incluyeron como parte de un videojuego real.Nowadays video game industry is facing a big challenge: keep costs under control as games become bigger and more complex. Creation of game content, such as character models, maps, levels, textures, sound effects and so on, represent a big slice of total game production cost. Hence, video game industry is increasingly turning to procedural content generation to amplify the cost-effectiveness of video game designers' efforts. However, creating and fine tunning procedural methods for automated content generation is a time consuming task. In this thesis we detail a Genetic Programming based procedural content technique to generate procedural terrains. Those terrains present aesthetic appeal and do not require any parametrization to control its look. Thus, allowing to save time and help reducing production costs. To accomplish these features we devised the Genetic Terrain Programming (GTP) technique. The first implementation of GTP used an Interactive Evolutionary Computation (IEC) approach, were a user guides the evolutionary process. In spite of the good results achieved this way, this approach was limited by user fatigue (common in IEC systems). To address this issue a second version of GTP was developed where the search is automated, being guided by a direct fitness function. That function is composed by two morphological metrics: terrain accessibility and obstacle edge length. The combination of the two metrics allowed us remove the human factor form the evolutionary process and to find a wide range of aesthetic and fit terrains. Procedural terrains produced by GTP are already used in a real video game.Ministerio de Educación y Ciencia (TIN2007-68083-C02-01); (TIN2008-05941); (TIN2011-28627-C04) Junta de Extremadura (GRU-09105); (GR10029) Junta de Andalucía (TIC-6083

    Creating a Geodesign syllabus for landscape architecture in Denmark

    Get PDF
    Geodesign provides a conceptual framework through which to understand relationships between geoscience and design. This  paper takes its point of departure from the merger of the Departments of Geography and Geology and Forest, Landscape and Planning at the University of Copenhagen, and the subsequent approach taken to Geodesign as a means to realise potentials within the new academic structure. The aim is to address specifically how an on-going process of transforming the Landscape Architecture program has begun to integrate GIScience in a new way that fosters integration within and between disciplines. The approach to Geodesign will therefore be discussed in terms of cross-disciplinary dialogue and curriculum development. Emphasis will be placed on the results of the Geodesign Conference held at UCPH in November 2014 at which practitioners and academics came together to present extensive experiences and understandings of Geodesign. The conference was also the forum for discussion of the challenges and opportunities offered by Geodesign in the context of teaching

    Investing in Creativity: A Study of the Support Structure for U.S. Artists

    Get PDF
    Documents and analyzes the environment of support for individual artists. Provides a framework for analysis of various dimensions of the support structure, nationally and in specific sites across the U.S. Includes support programs and policy initiatives

    Semi-Structured Decision Processes: A Conceptual Framework for Understanding Human-Automation Decision Systems

    Get PDF
    The purpose of this work is to improve understanding of existing and proposed decision systems, ideally to improve the design of future systems. A "decision system" is defined as a collection of information-processing components -- often involving humans and automation (e.g., computers) -- that interact towards a common set of objectives. Since a key issue in the design of decision systems is the division of work between humans and machines (a task known as "function allocation"), this report is primarily intended to help designers incorporate automation more appropriately within these systems. This report does not provide a design methodology, but introduces a way to qualitatively analyze potential designs early in the system design process. A novel analytical framework is presented, based on the concept of "semi-Structured" decision processes. It is believed that many decisions involve both well-defined "Structured" parts (e.g., formal procedures, traditional algorithms) and ill-defined "Unstructured" parts (e.g., intuition, judgement, neural networks) that interact in a known manner. While Structured processes are often desired because they fully prescribe how a future decision (during "operation") will be made, they are limited by what is explicitly understood prior to operation. A system designer who incorporates Unstructured processes into a decision system understands which parts are not understood sufficiently, and relinquishes control by deferring decision-making from design to operation. Among other things, this design choice tends to add flexibility and robustness. The value of the semi-Structured framework is that it forces people to consider system design concepts as operational decision processes in which both well-defined and ill-defined components are made explicit. This may provide more insight into decision systems, and improve understanding of the implications of design choices. The first part of this report defines the semi-Structured process and introduces a diagrammatic notation for decision process models. In the second part, the semi-Structured framework is used to understand and explain highly evolved decision system designs (these are assumed to be representative of "good" designs) whose components include feedback controllers, alerts, decision aids, and displays. Lastly, the semi-Structured framework is applied to a decision system design for a mobile robot.Charles Stark Draper Laboratory, Inc., under IR&D effort 101

    People, Land, Arts, Culture and Engagement: Taking Stock of the Place Initiative

    Get PDF
    This report serves as a point of entry into creative placemaking as defined and supported by the Tucson Pima Arts Council's PLACE Initiative. To assess how and to what degree the PLACE projects were helping to transform communities, TPAC was asked by the Kresge Foundation to undertake a comprehensive evaluation. This involved discussion with stakeholders about support mechanisms, professional development, investment, and impact of the PLACE Initiative in Tucson, Arizona, and the Southwest regionally and the gathering of qualitative and quantitative data to develop indicators and method for evaluating the social impact of the arts in TPAC's grantmaking. The report documents one year of observations and research by the PLACE research team, outside researchers and reviewers, local and regional working groups, TPAC staff, and TPAC constituency. It considers data from the first four years of PLACE Initiative funding, including learning exchanges, focus groups, individual interviews, grantmaking, and all reporting. It is also informed by evaluation and assessment that occurred in the development of the PLACE Initiative, in particular, Maribel Alvarez's Two-Way Mirror: Ethnography as a Way to Assess Civic Impact of Arts-Based Engagement in Tucson, Arizona (2009), and Mark Stern and Susan Seifert's Documenting Civic Engagement: A Plan for the Tucson Pima Arts Council (2009). Both of these publications were supported by Animating Democracy, a program of Americans for the Arts, that promotes arts and culture as potent contributors to community, civic, and social change. Both publications describe how TPAC approaches evaluation strategies associated with social impact of the arts in Tucson and Pima County. This report outlines the local context and historical antecedents of the PLACE Initiative in the region with an emphasis on the concept of "belonging" as a primary characteristic of PLACE projects and policy. It describes PLACE projects as well as the role of TPAC in creating and facilitating the Initiative. Based on the collective understanding of the research team, impacts of the PLACE Initiative are organized into three main realms -- institutions, artists, and communities. These realms are further addressed in case studies from select grantees, whose narratives offer rich, detailed perspectives about PLACE projects in context, with all their successes, rewards, and challenges for artists, communities, and institutions. Lastly, the report offers preliminary research findings on PLACE by TPAC in collaboration with Dr. James Roebuck, codirector of the University of Arizona's ERAD (Evaluation Research and Development) Program

    Libre culture: meditations on free culture

    Get PDF
    Libre Culture is the essential expression of the free culture/copyleft movement. This anthology, brought together here for the first time, represents the early groundwork of Libre Society thought. Referring to the development of creativity and ideas, capital works to hoard and privatize the knowledge and meaning of what is created. Expression becomes monopolized, secured within an artificial market-scarcity enclave and finally presented as a novelty on the culture industry in order to benefit cloistered profit motives. In the way that physical resources such as forests or public services are free, Libre Culture argues for the freeing up of human ideas and expression from copyright bulwarks in all forms
    • …
    corecore