15 research outputs found

    Synthesis and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing

    Get PDF
    Zinc is an essential \u27trace element\u27 that supports immune systems, and is required for DNA synthesis, cell division, and protein synthesis. Zinc nanoparticles (Zn NP) has antibacterial properties and potential to be used in biodegradable printed electronics devices. The research presented here is about the synthesis of Zn NP and their potential use in transient electronics devices. In Paper 1, a technique of room temperature synthesis of Zn NP is reported using ball milling. Controlled amount of PVP was mixed in the solvent to stabilize the Zn particles and minimize cold welding during milling. The size of the produced Zn NPs was found to be heavily dependent on the amount of PVP used in the solvent. The analyses reveals a crystal size of ~34.834 ± 1.76 nm and very low oxidation in the Zn NPs. The obtained Zn NPs were directly used to print bioresorbable patterns on Na-CMC and PVA substrates which forms conductive patterns upon subjecting to photonic sintering. In paper 2, a new method of manufacturing transient electronics devices is reported. An aerosol printer has been used to print patterns using Zn NPs based bioresorbable ink. Lower concentration of PVP used results in the formation of surface oxide, while higher concentration of PVP hinders the coalescence of Zn NPs. Conductivity of about 0.1% to that of bulk has been found when 0.1 wt % PVP is used. Analytical simulations has been accompanied with experimental verifications in the study of sintering mechanism of Zn NPs. XPS analysis indicates Zn NP surface protection by PVP. The ink was used to print patterns which can potentially be used as RFID tags, on a biodegradable Na-CMC substrate. The whole substrate dissolves in water --Abstract, page iv

    Computational fluid dynamics modeling and in situ physics-based monitoring of aerosol jet printing toward functional assurance of additively-manufactured, flexible and hybrid electronics

    Get PDF
    Aerosol jet printing (AJP)—a direct-write, additive manufacturing technique—has emerged as the process of choice particularly for the fabrication of flexible and hybrid electronics. AJP has paved the way for high-resolution device fabrication with high placement accuracy, edge definition, and adhesion. In addition, AJP accommodates a broad range of ink viscosity, and allows for printing on non-planer surfaces. Despite the unique advantages and host of strategic applications, AJP is a highly unstable and complex process, prone to gradual drifts in machine behavior and deposited material. Hence, real-time monitoring and control of AJP process is a burgeoning need. In pursuit of this goal, the objectives of the work are, as follows: (i) In situ image acquisition from the traces/lines of printed electronic devices right after deposition. To realize this objective, the AJP experimental setup was instrumented with a high-resolution charge-coupled device (CCD) camera, mounted on a variable-magnification lens (in addition to the standard imaging system, already installed on the AJ printer). (ii) In situ image processing and quantification of the trace morphology. In this regard, several customized image processing algorithms were devised to quantify/extract various aspects of the trace morphology from online images. In addition, based on the concept of shape-from-shading (SfS), several other algorithms were introduced, allowing for not only reconstruction of the 3D profile of the AJ-printed electronic traces, but also quantification of 3D morphology traits, such as thickness, cross-sectional area, and surface roughness, among others. (iii) Development of a supervised multiple-input, single-output (MISO) machine learning model—based on sparse representation for classification (SRC)—with the aim to estimate the device functional properties (e.g., resistance) in near real-time with an accuracy of ≥ 90%. (iv) Forwarding a computational fluid dynamics (CFD) model to explain the underlying aerodynamic phenomena behind aerosol transport and deposition in AJP process, observed experimentally. Overall, this doctoral dissertation paves the way for: (i) implementation of physics-based real-time monitoring and control of AJP process toward conformal material deposition and device fabrication; and (ii) optimal design of direct-write components, such as nozzles, deposition heads, virtual impactors, atomizers, etc

    Printed and drawn flexible electronics based on cellulose nanocomposites

    Get PDF
    Sustainability, flexibility, and low-power consumption are key features to meet the growing re- quirements of simplicity and multifunctionality of low-cost, disposable/recyclable smart electronic -of- -based composites hold po- tential to fulfill such demands when explored as substrate and/or electrolyte-gate, or as active channel layer on printed transistors and integrated circuits based on ionic responses (iontronics). In this work, a new generation of reusable, healable and recyclable regenerated cellulose hydro- gels with high ionic conductivity and conformability, capable of being provided in the form of stick- ers, are demonstrated. These hydrogels are obtained from a simple, fast, low-cost, and environ- mental-friendly aqueous alkali salt/urea dissolution method of native cellulose, combined with eration and simultaneous ion incorporation with acetic acid. Their electrochemical properties can be also merged with the mechanical robustness, thermal resistance, transparency, and smooth- - strate. Beyond gate dielectrics, a water-based screen-printable ink, composed of CMC binder and com- mercial zinc oxide (ZnO) semiconducting nanoparticles, was formulated. The ink enables the printing of relatively smooth and densely packed films on office paper with semiconducting func- tionality at room temperature. The rather use of porous ZnO nanoplates is beneficial to form per- colative pathways at lower contents of functional material, at the cost of rougher surfaces. The engineered cellulose composites are successfully integrated into flexible, recyclable, low- voltage (<3.5 V), printed electrolyte-gated office paper or on the ionically modified nanopaper. Ubiquitous calligraphy accessories are used -the- out on the target substrate, where are already printed the devices. Such concept paves the way for a worldwide boom of creativity, where we can freely create personal electronic kits, while having fun at it and without generating waste.Sustentabilidade, flexibilidade e baixo consumo energético são características chave para atender aos crescentes requisitos de simplicidade e multifuncionalidade de sistemas eletrónicos inteligentes de baixo custo, das- Compósitos à base de celulose têm potencial para atender a tais necessidades quando explora- dos como substrato e/ou porta-de-eletrólito ou como camada de canal ativo em transístores impressos e circuitos integrados baseados em respostas iónicas (iontronics). Neste trabalho, é demonstrada uma nova geração de hidrogéis reutilizáveis, reparáveis e recicláveis baseados em celulose regenerada, que apresentam alta condução iónica e conformabilidade, podendo ser fornecidos na forma de adesivos. Estes hidrogéis são obtidos a partir de um método simples, rápido, barato e amigo do ambiente que permite a dissolução de celulose nativa em soluções aquosas com mistura de sal alcalino e ureia, combinado com carboximetil celulose (CMC) para melhorar a sua robustez, seguido da regeneração e simultâneo enriquecimento iónico com ácido acético. As suas propriedades eletroquímicas podem ser combinadas com a inbase de celulose micro/nanofibrilada para obter um substrato eletrolítico semelhante a papel. Para além de portas-dielétricas, foi formulada uma tinta aquosa compatível com serigrafia, composta por CMC como espessante e nanopartículas semicondutoras de ZnO. A tinta permite a impressão de filmes pouco rugosos e densamente percolados sobre papel de escritório, e com funcionalidade semicondutora à temperatura ambiente. O uso alternativo de nanoplacas porosas de ZnO é benéfico para criar caminhos percolativos com menores teores de material funcional, apesar de se obter filmes rugosos. Os compósitos à base celulose foram integrados com sucesso em transístores e portas lógicas porta-eletrolítica, os quais foram impressos em papel de escritório ou no "nanopapel" iconicamente modificado. Acessórios de caligrafia permitem a fácil e rápida padronização de pistas condutoras/resistivas, desenhando-as no substrato alvo, onde estão impressos os dispositivos. Este conceito despoleta um mundo criativo, onde é possível criar livremente kits eletrónicos customizados de forma divertida e sem gerar resíduos

    Design, characterization and validation of integrated bioelectronics for cellular studies: from inkjet-printed sensors to organic actuators

    Get PDF
    Mención Internacional en el título de doctorAdvances in bioinspired and biomimetic electronics have enabled coupling engineering devices to biological systems with unprecedented integration levels. Major efforts, however, have been devoted to interface malleable electronic devices externally to the organs and tissues. A promising alternative is embedding electronics into living tissues/organs or, turning the concept inside out, lading electronic devices with soft living matters which may accomplish remote monitoring and control of tissue’s functions from within. This endeavor may unleash the ability to engineer “living electronics” for regenerative medicine and biomedical applications. In this context, it remains a challenge to insert electronic devices efficiently with living cells in a way that there are minimal adverse reactions in the biological host while the electronics maintaining the engineered functionalities. In addition, investigating in real-time and with minimal invasion the long-term responses of biological systems that are brought in contact with such bioelectronic devices is desirable. In this work we introduce the development (design, fabrication and characterization) and validation of sensors and actuators mechanically soft and compliant to cells able to properly operate embedded into a cell culture environment, specifically of a cell line of human epithelial keratinocytes. For the development of the sensors we propose moving from conventional microtechnology approaches to techniques compatible with bioprinting in a way to support the eventual fabrication of tissues and electronic sensors in a single hybrid plataform simultaneously. For the actuators we explore the use of electroactive, organic, printing-compatible polymers to induce cellular responses as a drug-free alternative to the classic chemical route in a way to gain eventual control of biological behaviors electronically. In particular, the presented work introduces inkjet-printed interdigitated electrodes to monitor label-freely and non-invasively cellular migration, proliferation and cell-sensor adhesions of epidermal cells (HaCaT cells) using impedance spectroscopy and the effects of (dynamic) mechanical stimulation on proliferation, migration and morphology of keratinocytes by varying the magnitude, frequency and duration of mechanical stimuli exploiting the developed biocompatible actuator. The results of this thesis contribute to the envision of three-dimensional laboratory-growth tissues with built-in electronics, paving exciting avenues towards the idea of living smart cyborg-skin substitutes.En los útimos años los avances en el desarrollo de dispositivos electrónicos diseñados imitando las propiedades de sistemas vivos han logrado acoplar sistemas electrónicos y órganos/tejidos biológicos con un nivel de integración sin precedentes. Convencionalmente, la forma en que estos sistemas bioelectrónicos son integrados con órganos o tejidos ha sido a través del contacto superficial entre ambos sistemas, es decir acoplando la electrónica externamente al tejido. Lamentablemente estas aproximaciones no contemplan escenarios donde ha habido una pérdida o daño del tejido con el cual interactuar, como es el caso de daños en la piel debido a quemaduras, úlceras u otras lesiones genéticas o producidas. Una alternativa prometedora para ingeniería de tejidos y medicina regenerativa, y en particular para implantes de piel, es embeber la electrónica dentro del tejido, o presentado de otra manera, cargar el sistema electrónico con células vivas y tejidos fabricados por ingeniería de tejidos como parte innata del propio dispositivo. Este concepto permitiría no solo una monitorización remota y un control basado en señalizaciones eléctricas (sin químicos) de tejidos biológicos fabricados mediante técnicas de bioingeniería desde dentro del propio tejido, sino también la fabricación de una “electrónica viva”, biológica y eléctricamente funcional. En este contexto, es un desafío insertar de manera eficiente dispositivos electrónicos con células vivas sin desencadenar reacciones adversas en el sistema biológico receptor ni en el sistema electrónico diseñado. Además, es deseable monitorizar en tiempo real y de manera mínimamente invasiva las respuestas de dichos sistemas biológicos que se han añadido a tales dispositivos bioelectrónicos. En este trabajo presentamos el desarrollo (diseño, fabricación y caracterización) y validación de sensores y actuadores mecánicamente suaves y compatibles con células capaces de funcionar correctamente dentro de un entorno de cultivo celular, específicamente de una línea celular de células epiteliales humanas. Para el desarrollo de los sensores hemos propuesto utilizar técnicas compatibles con la bioimpresión, alejándonos de la micro fabricación tradicionalmente usada para la manufactura de sensores electrónicos, con el objetivo a largo plazo de promover la fabricación de los tejidos y los sensores electrónicos simultáneamente en un mismo sistema de impresión híbrido. Para el desarrollo de los actuadores hemos explorado el uso de polímeros electroactivos y compatibles con impresión y hemos investigado el efecto de estímulos mecánicos dinámicos en respuestas celulares con el objetivo a largo plazo de autoinducir comportamientos biológicos controlados de forma electrónica. En concreto, este trabajo presenta sensores basados en electrodos interdigitados impresos por inyección de tinta para monitorear la migración celular, proliferación y adhesiones célula-sustrato de una línea celular de células epiteliales humanas (HaCaT) en tiempo real y de manera no invasiva mediante espectroscopía de impedancia. Por otro lado, este trabajo presenta actuadores biocompatibles basados en el polímero piezoeléctrico fluoruro de poli vinilideno y ha investigado los efectos de estimular mecánicamente células epiteliales en relación con la proliferación, migración y morfología celular mediante variaciones dinámicas de la magnitud, frecuencia y duración de estímulos mecánicos explotando el actuador biocompatible propuesto. Ambos sistemas presentados como resultado de esta tesis doctoral contribuyen al desarrollo de tejidos 3D con electrónica incorporada, promoviendo una investigación hacia la fabricación de sustitutos equivalentes de piel mitad orgánica mitad electrónica como tejidos funcionales biónicos inteligentes.The main works presented in this thesis have been conducted in the facilities of the Universidad Carlos III de Madrid with support from the program Formación del Profesorado Universitario FPU015/06208 granted by Spanish Ministry of Education, Culture and Sports. Some of the work has been also developed in the facilities of the Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM) and University of Applied Sciences (HTW) in Berlin, under the supervision of Prof. Dr. Ing. H-D. Ngo during a research visit funded by the Mobility Fellows Program by the Spanish Ministry of Education, Culture, and Sports. This work has been developed in the framework of the projects BIOPIELTEC-CM (P2018/BAA-4480), funded by Comunidad de Madrid, and PARAQUA (TEC2017-86271-R) funded by Ministerio de Ciencia e Innovación.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: José Antonio García Souto.- Secretario: Carlos Elvira Pujalte.- Vocal: María Dimak

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere
    corecore