10 research outputs found

    Book Reviews

    Get PDF

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 134)

    Get PDF
    This special bibliography lists 301 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in October 1974

    Aerobiology and Spread of Microbial Diseases

    Get PDF
    The different steps in spread of micro-organisms through the atmosphere causing diseases have been detailed. Case studies of a variety of disease outbursts have been correlated with the source and spread of causative agents. These micro-organisms also flourish in certain work environments causing an occupational hazard

    Atmospheric Air Pollution and Monitoring

    Get PDF
    Indoor air quality (IAQ) is an important aspect in building design due to its effect on human health and wellbeing. Generally, people spend about 90% of their time indoors where they are exposed to chemicals, particulate matters, biological contaminants and possibly carcinogens. In particular, the air quality at hospitals carries with it risks for serious health consequences for medical staff as well as patients and visitors. This book is a study of atmospheric air pollution and presents ways we can reduce its impacts on human health. It discusses tools for measuring IAQ as well as analyzes IAQ in closed buildings. It is an important documentation of air quality and its impact on human health

    Airborne microbiota and related environmental parameters associated with a typical dairy farm plant

    Get PDF
    Thesis (M. Tech. (Environmental health: Food safety )) - Central university of Technology, Free State, 2013Food processing plants and agricultural environments have a long-standing history of being known to provide a conducive environment for the prevalence and distribution of microorganisms which emanate as a consequence of activities undertaken in such premises. Microorganisms in the aforementioned environments may be found in the atmosphere (airborne), and/or on food contact surfaces. Airborne microorganisms from food handlers and in food products and raw materials (as part of bioaerosols) have in the past been implicated as having a potential to cause adverse health effects (especially in indoor environments) and therefore also to have economic implications. Recently their effect on food safety has received increased interest. The recent international interest in bioaerosols in the food industry has played a role in rapidly providing increased understanding of bioaerosols and their effects in different food processing environments. However, there is still a lack of research on the actual impact of bioaerosols over time in most of the food premises especially in Southern Africa and other developing countries. The overall purpose of this dissertation was to assess possible microbial contaminants and the role of selected environmental parameters on these microbes at a dairy farm plant in central South Africa. In relation to the purpose of the study, the objectives of this dissertation were to investigate and establish the food handler’s food safety knowledge, attitude, behaviour and practices. The sub-objective was to investigate the prevalence and distribution of microbial contaminants (both airborne and food contact surface populations), and concomitant environmental parameters. The microbe isolates from both investigations (i.e. air samples and food contact surfaces) were identified to strain level using matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS). The findings of this study in relation to food handlers’ food safety knowledge, attitude, behaviour and practices indicated a dire need for training of employees as well as improved health and hygiene measures as emphasised by some of the identified strains. The environmental parameters (both indoor and outdoor) were similar, with no relationship established between airborne microbes’ prevalence and environmental parameters. The samples of the airborne microbial populations in both indoor and outdoor environments were similar. Airborne microbial counts at the dairy farm plant over the entire duration of the study ranged between 1.50 x 101cfu.m-3and 1.62 x 102cfu.m-3. Microbial counts on food contact surfaces ranged between 2.50 x 102 cfu.cm-2 and 1.10 x 105 cfu.cm-2 over the entire duration of the study. A wide variety of microorganisms (from air and food contact surfaces) such as the Gram-positive bacteria, Gram-negative bacteria, as well as fungi were present at the dairy farm plant. A number of the isolated genera have previously been associated with agricultural environments whilst others are associated with hospital environments. The positively identified strains were from genera such as Aeromonas, Arthrobacter, Candida, Pseudomonas, Pantoea, Citrobacter, Staphylococcus, Bacillus, Escherichia, Rhodococcus and Rhodotorula, amongst others. The isolation of microorganisms associated with food spoilage and foodborne disease outbreaks, which are known as indicator organisms such as Escherichia coli, Staphylococcus and Bacillus from both air and surface samples, signified possible faecal contamination and could be attributed to poor health and hygiene practices at the dairy farm plant. Despite the isolation of microorganisms associated with food spoilage and foodborne disease outbreaks, the isolation of microorganisms not usually associated with the food processing industry (usually associated with hospital environments) was an enormous and serious concern which suggested a need for further investigations at dairy farm plants as the implications of these pathogenic microorganisms in food is not known. The isolation of similar microorganisms from both the air samples and surface swabs suggests that airborne microbes have a potential of settling on food contact surfaces, therefore having a potential to contaminate dairy products which are known to be more prone to contamination and which, because of their nutritional status, serve as a good substrate for the growth of microorganisms

    Aerospace Medicine and Biology: A cumulative index to the 1974 issues of a continuing bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 125 through 136 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes three indexes--subject, personal author, and corporate source

    Shiga Toxin-Producing Escherichia coli (STEC) Detection Strategies with Formalin-Fixed STEC Cells

    Get PDF
    Certain pathogenic Escherichia coli known as Shiga toxin (Stx)-producing Escherichia coli (STEC) are commensals in cattle, and typically cause bloody diarrhea in humans once the Stx toxin is secreted in invaded intestinal epithelial cells. Infections with STEC cells can lead to hemolytic uremic syndrome, which is commonly associated with kidney failure. Several STEC serogroups have been declared adulterants in raw, non-intact ground meat, and future regulations could potentially lead to a higher number of STEC serogroup detection strategies for these pathogenic microorganisms. Microbiological research laboratories may benefit from formalin-fixed STEC cells for periodic (daily, weekly, monthly, among others) instrument validation/calibration by serving as a working set of known cell concentration samples and internal standard i.e. positive control. These cell concentrations may be used across laboratories in different geographical locations, within an individual laboratory, and across a broad range of detection assays (molecular as well as immuno-based). This thesis consists of three research parts: a comprehensive literature review that covers STEC incidence in foods and molecular detection techniques (chapter 1), a literature review that covers immuno-based detection strategies (chapter 2), and a research manuscript that involves the development of an internal standard and positive control with formalin-fixed STEC cells that can be used for a broad range of molecular as well immuno-based detection assays for instrument calibration and validation purposes (chapter 3)

    Legal framework for utilisation and emissions-impact mitigation from natural gas production: the case for Nigeria.

    Get PDF
    Environmental concerns dominate every stage of oil and gas operations, from production to consumption stages. At the production stage, there is the problem of waste of associated gas through flaring emissions, while pipeline leakages and tanker accidents are common during transportation of products and services. During consumption, the combustion of these gases also causes environmental pollution and impact negatively on the health of people and communities. In emerging markets, the oil and gas sector is at the centre of the demand for reduction in global carbon emissions because 60 out of 70 per cent of energy-related global emissions are attributed to continuous extraction, processing and burning of oil and gas. Furthermore, 63 per cent of current global emissions have been estimated to come from developing and emerging market areas. As an emerging economy dependent on oil and gas, Nigeria's continuing waste of natural gas through flaring alone accounts for 40 per cent of total greenhouse gas emissions from Sub-Saharan Africa. This is due to poor gas infrastructure, an underdeveloped domestic gas market, inefficient regulation of the sector and a lack of a comprehensive HSE regime. Other challenges include insecurity, poor incentives for private sector engagement and an overwhelming focus on crude oil revenue etc. This work therefore focuses on proposing new framework structures to support investment in critical gas infrastructures, drive the development of the domestic gas market and mitigate emissions impact in Nigeria. While this study is generally a doctrinal and non-doctrinal (sociolegal) inquiry, it adopts a comparative and case study analysis to resolve the research question. It does this by relying on primary and secondary sources of laws on oil and gas, including non-legal data on natural gas, impact of gas flaring and challenges to natural gas utilisation

    Molecular microbial ecology of Polar aerial environments

    Get PDF
    The biodiversity of bacterial communities in the Polar atmosphere is understudied, and as a result, the degree to which these communities influence macroecological patterns of biodiversity is poorly understood. This study aimed to investigate the bacterial biodiversity of the atmosphere by testing the hypothesis that bacteria are ubiquitous and present in polar air as heterogeneous communities. The study found bacterial DNA in all samples collected from both Poles, and whilst a degree of heterogeneity was observed in Arctic bacterial communities, there was an unexpectedly high level of sequence in the Antarctic. Currently, there is no consensus as to the most appropriate bioaerosol sampling method, and the degree to which sampling methodology impacts the results of bioaerosol studies is still unknown. This variability was assessed by testing the hypothesis that bacterial community profiles in Polar air samples are not influenced by sampling methodology. However, the findings suggest that choice of bioaerosol sampling methodology can have a strong impact on the biodiversity observed. The high level of sequence diversity in Antarctic air samples led to an investigation of technical variation as a result of their low biomass; and from this, it was found that the lower limit of biomass for a successful community description using an Illumina MiSeq approach was 1x106 CFU per mL-1, and that the lower limit at which this concentration of bacteria could be extracted using the most commonly used commercial DNA extraction kit was 1x107 CFU per mL-1. Antarctic bioaerosol samples were found to have considerably lower biomass than these limits, suggesting that the results obtained were, in part due to technical variation as a result of their low biomass. The choice of bioinformatics pipeline was also investigated for low biomass samples, and found to have no effect on the final outcome. Overall, the study showed that the Polar atmosphere contains very low biomass and that the pattern of biodiversity in this low biomass environment was both variable and not linked to physical or chemical environmental parameters. Hence, the atmosphere may act as a barrier to dispersal both into and out of the Polar regions
    corecore