175 research outputs found

    Visualization of Global Trade-Offs in Aerodynamic Problems by ARMOGAs

    Get PDF
    Trade-offs is one of important elements for engineering design problems characterized by multiple conflicting design objectives to be simultaneously improved. In many design problems such as aerodynamic design, due to computational reasons, only a limited number of evaluations can be allowed for industrial use. Efficient MOEAs, Adaptive Range Multi-Objective Genetic Algorithms (ARMOGAs), to identify trade-offs using a small number of function evaluations have been developed. In this study, ARMOGAs are applied to aerodynamic designs problems to identify trade-offs efficiently. In addition to identify trade-offs, trade-off analysis is also important to obtain useful knowledge about the design problem. To analyze the high-dimensional data of aerodynamic optimization problem, Self-Organizing Maps are applied to understand the trade-offs

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Multidisciplinary aerospace design optimization: Survey of recent developments

    Get PDF
    The increasing complexity of engineering systems has sparked increasing interest in multidisciplinary optimization (MDO). This paper presents a survey of recent publications in the field of aerospace where interest in MDO has been particularly intense. The two main challenges of MDO are computational expense and organizational complexity. Accordingly the survey is focussed on various ways different researchers use to deal with these challenges. The survey is organized by a breakdown of MDO into its conceptual components. Accordingly, the survey includes sections on Mathematical Modeling, Design-oriented Analysis, Approximation Concepts, Optimization Procedures, System Sensitivity, and Human Interface. With the authors' main expertise being in the structures area, the bulk of the references focus on the interaction of the structures discipline with other disciplines. In particular, two sections at the end focus on two such interactions that have recently been pursued with a particular vigor: Simultaneous Optimization of Structures and Aerodynamics, and Simultaneous Optimization of Structures Combined With Active Control

    Global search methods for nonlinear optimisation: a new probabilistic-stochastic approach

    Get PDF
    In this work the problem of overcoming local minima in the solution of nonlinear optimisation problems is addressed. As a first step, the existing nonlinear local and global optimisation methods are reviewed so as to identify their advantages and disadvantages. Then, the major capabilities of a number of successful methods such as genetic, deterministic global optimisation methods and simmulated annealing, are combined to develop an alternative global optimisation approach based on a Stochastic-Probabilistic heuristic. The capabilities, in terms of robustness and efficiency, of this new approach are validated through the solution of a number of nonlinear optimisation problems. A well know evolutionary technique (Differential Evolution) is also considered for the solution of these case studies offering a better insight of the possibilities of the method proposed here.Postprint (published version

    Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    Get PDF
    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed

    Robust evolutionary methods for multi-objective and multdisciplinary design optimisation in aeronautics

    Get PDF

    Identifying preferred solutions for multi-objective aerodynamic design optimization

    Get PDF
     Aerodynamic designers rely on high-fidelity numerical models to approximate, within reasonable accuracy, the flow around complex aerodynamic shapes. The ability to improve the flow field behaviour through shape modifications has led to the use of optimization techniques. A significant challenge to the application of evolutionary algorithms for aerodynamic shape optimization is the often excessive number of expensive computational fluid dynamic evaluations required to identify optimal designs. The computational effort is intensified when considering multiple competing objectives, where a host of trade-off designs are possible. This research focuses on the development of control measures to improve efficiency and incorporate the domain knowledge and experience of the designer to facilitate the optimization process. A multi-objective particle swarm optimization framework is developed, which incorporates designer preferences to provide further guidance in the search. A reference point is projected on the objective landscape to guide the swarm towards solutions of interest. This point reflects the preferred compromise and is used to focus all computing effort on exploiting a preferred region of the Pareto front. Data mining tools are introduced to statistically extract information from the design space and confirm the relative influence of both variables and objectives to the preferred interests of the designer. The framework is assisted by the construction of time-adaptive Kriging models, for the management of high-fidelity problems restricted by a computational budget. A screening criterion to locally update the Kriging models in promising areas of the design space is developed, which ensures the swarm does not deviate from the preferred search trajectory. The successful integration of these design tools is facilitated through the specification of the reference point, which can ideally be based on an existing or target design. The over-arching goal of the developmental effort is to reduce the often prohibitive cost of multi-objective design to the level of practical affordability in aerospace problems. The superiority of the proposed framework over more conventional search methods is conclusively demonstrated via a series of experiments and aerodynamic design problems

    A review of modelling and analysis of morphing wings

    Get PDF
    Morphing wings have a large potential to improve the overall aircraft performances, in a way like natural flyers do. By adapting or optimising dynamically the shape to various flight conditions, there are yet many unexplored opportunities beyond current proof-of-concept demonstrations. This review discusses the most prominent examples of morphing concepts with applications to two and three-dimensional wing models. Methods and tools commonly deployed for the design and analysis of these concepts are discussed, ranging from structural to aerodynamic analyses, and from control to optimisation aspects. Throughout the review process, it became apparent that the adoption of morphing concepts for routine use on aerial vehicles is still scarce, and some reasons holding back their integration for industrial use are given. Finally, promising concepts for future use are identified

    MULTI-OBJECTIVE EFFICIENT PARAMETRIC OPTIMIZATION

    Get PDF
    Parametric optimization is the process of solving an optimization problem as a function of currently unknown or changing variables known as parameters. Parametric optimization methods have been shown to benefit engineering design and optimal morphing applications through its specialized problem formulation and specialized algorithms. Despite its benefits to engineering design, existing parametric optimization algorithms (similar to many optimization algorithms) can be inefficient when design analyses are expensive. Since many engineering design problems involve some level of expensive analysis, a more efficient parametric optimization algorithm is needed. Therefore, the multi-objective efficient parametric optimization (MO-EPO) algorithm is developed to allow for the efficient optimization of problems with multiple parameters and objectives. This technique relies on the new parametric hypervolume indicator (pHVI) which measures the space dominated by a given set of data involving both objectives and parameters. The pHVI benefits parametric optimization by enabling the comparison of optimization results, enabling the visualization and detection of optimization convergence, and providing information for an optimization algorithm. MO-EPO uses response surface models of expensive functions to find and evaluate a designs expected to improve the solution and/or models. With new information, response surface models are updated and the process is repeated. "Improvement" is measured by the pHVI metric allowing for the consideration of any number of objectives and parameters. The novel MO-EPO algorithm is demonstrated on a number of analytical benchmarking problems and two distinct morphing applications with various numbers of objectives and parameters. In each case, MO-EPO is shown to find solutions that are as good as or better than those found from the existing P3GA (i.e., equal or greater pHVI value) when the number of design evaluations is limited. Both the pHVI metric and the MO-EPO algorithm are significant contributions to parametric optimization methodology and engineering design

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study
    • …
    corecore