295 research outputs found

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Aerial Forest Fire Detection and Monitoring Using a Small UAV

    Get PDF
    In recent years, large patches of forest have been destroyed by fires, bringing tragic consequences for the environment and small settlements established around these regions. In this context, it is essential that fire fighting teams possess an increased situational awareness about the fire propagation, in order to promptly act in the extinguishing process. Recent advances in UAV technology allied with remote sensing and computer vision techniques show very promising UAVs applicability in forest fires detection and monitoring. Besides presenting lower operational costs, these vehicles are able to reach regions that are inaccessible or considered too dangerous for fire fighting crews operations. This paper describes the application of a real-time forest fire detection algorithm using aerial images captured by a video camera onboard    an Unmanned Aerial Vehicle (UAV). The forest fire detection algorithm consists of a rule-based colour model that uses both RGB and YCbCr colour spaces to identify fire pixels. An intuitive targeting system was also developed, allowing the detection of multiple fires at the same time. Additionally, a fire geolocation algorithm was developed in order to estimate the fire location in terms of latitude (φ),  longitude     (λ) and altitude (h). The geolocation algorithm consists of applying two coordinates systems transformations between the body-fixed frame, North-East-Down frame (NED) and Earth-Centered, Earth Fixed (ECEF) frame. Flight tests were performed during  a controlled burn in order to assess the fire detection algorithm performance. The algorithm was able to detect the fire with few false positive detections. Keywords: Aerial fire detection algorithm, Aerial fire monitoring, Forest fire, UAV, Remote sensin

    Preparing for Future Forest Fires: Emerging Technologies and Innovations

    Get PDF
    Forest fires are part of the global ecosystems occurring for a long time in earth history.  These forest fires are part of the processes which establish the ecosystems and directly influence plant species composition within the ecosystems. However, the anthropogenic effect has changed this relationship causing an increasing number of forest fires Human activities have also changed world climate and future climate is expected to increase in temperature with dire consequences on the earth environment. These changes will profoundly impact on the earth’s socio-economic and human well-being. One of the effects of higher global temperature is increasing forest fires occurrences with stronger intensities.  There is a need to develop innovation and new technologies to manage these future fires. This paper aims to review various innovations and new technologies that can be used for the whole spectrum of forest fire management, from forest fire prediction to forest restoration of burnt areas. Emerging technologies such as geospatial technologies, the Internet of Things (IoT), Artificial Intelligence, 5G & enhanced connectivity, the Internet of Behaviors (IoB), virtual and augmented reality, and robotics are discussed and potential applications to forest fire management are discussed. Adaptation of these technologies is vital in the effective management of future forest fires. Key words: Climate Change, Future Fires, InnovationsKebakaran hutan merupakan bagian dari ekosistem global yang terjadi sejak lama dalam sejarah bumi. Kebakaran hutan ini merupakan bagian dari proses yang membentuk ekosistem dan secara langsung mempengaruhi komposisi spesies tumbuhan di dalam ekosistem. Namun, efek antropogenik telah mengubah hubungan ini yang menyebabkan peningkatan jumlah kebakaran hutan Aktivitas manusia juga telah mengubah iklim dunia dan iklim di masa depan diperkirakan akan meningkatkan suhu dengan konsekuensi yang mengerikan pada lingkungan bumi. Perubahan ini akan sangat berdampak pada sosial ekonomi bumi dan kesejahteraan manusia. Salah satu dampak dari peningkatan suhu global adalah meningkatnya kejadian kebakaran hutan dengan intensitas yang lebih kuat. Ada kebutuhan untuk mengembangkan inovasi dan teknologi baru untuk mengelola kebakaran di masa depan ini. Tulisan ini bertujuan untuk mengkaji berbagai inovasi dan teknologi baru yang dapat digunakan untuk seluruh spektrum penanggulangan kebakaran hutan, mulai dari prediksi kebakaran hutan hingga restorasi hutan pada kawasan yang terbakar. Teknologi yang muncul seperti teknologi geospasial, Internet of Things (IoT), Artificial Intelligence, 5G & konektivitas yang ditingkatkan, Internet of Behaviors (IoB), virtual dan augmented reality, dan robotika dibahas dan aplikasi potensial untuk manajemen kebakaran hutan dibahas. Adaptasi teknologi ini sangat penting dalam pengelolaan kebakaran hutan yang efektif di masa depan. Kata kunci: Perubahan Iklim, Kebakaran di Masa Depan, Inovas

    Review article: The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management

    Get PDF
    The number of scientific studies that consider possible applications of remotely piloted aircraft systems (RPASs) for the management of natural hazards effects and the identification of occurred damages strongly increased in the last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of the literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPASs can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes such as landslides or volcanic activities but can also define the effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazard

    Using Unmanned Aerial Vehicles (UAV) for forest damage monitoring in south-western Europe

    Get PDF
    P. 1-8Prescribed burns are being considered as a management tool for the prevention of forest fires in many countries that have important firefighting problems. Knowledge of fire intensity and eliminated vegetation fuel are of great interest to evaluate their effectiveness. Both parameters are directly related to burn severity, so their evaluation is fundamental to predict the post-fire evolution of burned area. In this study we evaluated two prescribed burnings carried out in North of Spain during October 2017 by using multispectral data from an Unmanned Aerial Vehicle (UAV). In particular, four surface reflectance images were obtained in green (550 nm), red (660 nm), red-edge (735 nm) and near infrared (790 nm) at very high spatial resolution (GSD 20 cm) from which different spectral indexes were computed. Additionally, vegetation and soil burn severity was measured in 153 field plots and an analysis of variance (ANOVA) between each spectral index and burn severity (both in vegetation and soil) was performed. A Fisher’s least significant difference test determined that three vegetation burn severity levels and two soil burn severity levels could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that multispectral data from UAVs may be considered as a valuable indicator of burn severity for prescribed burnings.S

    Remote Sensing and GIS Applications in Wildfires

    Get PDF
    Wildfires are closely associated with human activities and global climate change, but they also affect human health, safety, and the eco-environment. The ability of understanding wildfire dynamics is important for managing the effects of wildfires on infrastructures and natural environments. Geospatial technologies (remote sensing and GIS) provide a means to study wildfires at multiple temporal and spatial scales using an efficient and quantitative method. This chapter presents an overview of the applications of geospatial technologies in wildfire management. Applications related to pre-fire conditions management (fire hazard mapping, fire risk mapping, fuel mapping), monitoring fire conditions (fire detection, detection of hot-spots, fire thermal parameters, etc.) and post-fire condition management (burnt area mapping, burn severity, soil erosion assessments, post-fire vegetation recovery assessments and monitoring) are discussed. Emphasis is given to the roles of multispectral sensors, lidar and evolving UAV/drone technologies in mapping, processing, combining and monitoring various environmental characteristics related to wildfires. Current and previous researches are presented, and future research trends are discussed. It is wildly accepted that geospatial technologies provide a low-cost, multi-temporal means for conducting local, regional and global-scale wildfire research, and assessments

    Monitoring and Cordoning Wildfires with an Autonomous Swarm of Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial body of literature exists that emphasises the potential of autonomous drone swarms in various situational awareness missions, including in the context of environmental protection. In this paper, we present the results of a systematic investigation by means of numerical methods i.e., Monte Carlo simulation. We report our insights into the influence of key parameters such as fire propagation dynamics, surface area under observation and swarm size over the performance of an autonomous drone force operating without human supervision. We limit the use of drones to perform passive sensing operations with the goal to provide real-time situational awareness to the fire fighters on the ground. Therefore, the objective is defined as being able to locate, and then establish a continuous perimeter (cordon) around, a simulated fire event to provide live data feeds such as e.g., video or infra-red. Special emphasis was put on exclusively using simple, robust and realistically implementable distributed decision functions capable of supporting the self-organisation of the swarm in the pursuit of the collective goal. Our results confirm the presence of strong nonlinear effects in the interaction between the aforementioned parameters, which can be closely approximated using an empirical law. These findings could inform the mobilisation of adequate resources on a case-by-case basis, depending on known mission characteristics and acceptable odds (chances of success)

    Early wildfire detection by air quality sensors on unmanned aerial vehicles: Optimization and feasibility

    Get PDF
    “Millions of acres of forests are destroyed by wildfires every year, causing ecological, environmental, and economical losses. The recent wildfires in Australia and the Western U.S. smothered multiple states with more than fifty million acres charred by the blazes. The warmer and drier climate makes scientists expect increases in the severity and frequency of wildfires and the associated risks in the future. These inescapable crises highlight the urgent need for early detection and prevention of wildfires. This work proposed an energy management framework that integrated unmanned aerial vehicle (UAV) with air quality sensors for early wildfire detection and forest monitoring. An autonomous patrol solution that effectively detects wildfire events, while preserving the UAV battery for a larger area of coverage was developed. The UAV can send real-time data (e.g., sensor readings, thermal pictures, videos, etc) to nearby communications base stations (BSs) when a wildfire is detected. An optimization problem that minimized the total UAV’s consumed energy and satisfied a certain quality-of-service (QoS) data rate were formulated and solved. More specifically, this study optimized the flight track of a UAV and the transmit power between the UAV and BSs. Finally, selected simulation results that illustrate the advantages of the proposed model were proposed”--Abstract, page iii
    • 

    corecore