3,836 research outputs found

    A waypoint-based mission planner for a farmland coverage with an aerial robot - a precision farming tool

    Get PDF
    Remote sensing (RS) with aerial robots is becoming more usual in every day time in Precision Agriculture (PA) practices, do to their advantages over conventional methods. Usually, available commercial platforms providing off-the-shelf waypoint navigation are adopted to perform visual surveys over crop fields, with the purpose to acquire specific image samples. The way in which a waypoint list is computed and dispatched to the aerial robot when mapping non empty agricultural workspaces has not been yet discussed. In this paper we propose an offline mission planner approach that computes an efficient coverage path subject to some constraints by decomposing the environment approximately into cells. Therefore, the aim of this work is contributing with a feasible waypoints-based tool to support PA practice

    Al-Robotics team: A cooperative multi-unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge

    Get PDF
    The Al-Robotics team was selected as one of the 25 finalist teams out of 143 applications received to participate in the first edition of the Mohamed Bin Zayed International Robotic Challenge (MBZIRC), held in 2017. In particular, one of the competition Challenges offered us the opportunity to develop a cooperative approach with multiple unmanned aerial vehicles (UAVs) searching, picking up, and dropping static and moving objects. This paper presents the approach that our team Al-Robotics followed to address that Challenge 3 of the MBZIRC. First, we overview the overall architecture of the system, with the different modules involved. Second, we describe the procedure that we followed to design the aerial platforms, as well as all their onboard components. Then, we explain the techniques that we used to develop the software functionalities of the system. Finally, we discuss our experimental results and the lessons that we learned before and during the competition. The cooperative approach was validated with fully autonomous missions in experiments previous to the actual competition. We also analyze the results that we obtained during the competition trials.Unión Europea H2020 73166

    NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.Peer ReviewedAgha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., Ginting, M. F., Ebadi, K., Anderson, M., Pailevanian, T., Terry, E., Wolf, M., Tagliabue, A., Vaquero, T. S., Palieri, M., Tepsuporn, S., Chang, Y., Kalantari, A., Chavez, F., Lopez, B., Funabiki, N., Miles, G., Touma, T., Buscicchio, A., Tordesillas, J., Alatur, N., Nash, J., Walsh, W., Jung, S., Lee, H., Kanellakis, C., Mayo, J., Harper, S., Kaufmann, M., Dixit, A., Correa, G. J., Lee, C., Gao, J., Merewether, G., Maldonado-Contreras, J., Salhotra, G., Da Silva, M. S., Ramtoula, B., Fakoorian, S., Hatteland, A., Kim, T., Bartlett, T., Stephens, A., Kim, L., Bergh, C., Heiden, E., Lew, T., Cauligi, A., Heywood, T., Kramer, A., Leopold, H. A., Melikyan, H., Choi, H. C., Daftry, S., Toupet, O., Wee, I., Thakur, A., Feras, M., Beltrame, G., Nikolakopoulos, G., Shim, D., Carlone, L., & Burdick, JPostprint (published version

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)
    • …
    corecore