13,419 research outputs found

    Online graph coloring against a randomized adversary

    Get PDF
    Electronic version of an article published as Online graph coloring against a randomized adversary. "International journal of foundations of computer science", 1 Juny 2018, vol. 29, núm. 4, p. 551-569. DOI:10.1142/S0129054118410058 © 2018 copyright World Scientific Publishing Company. https://www.worldscientific.com/doi/abs/10.1142/S0129054118410058We consider an online model where an adversary constructs a set of 2s instances S instead of one single instance. The algorithm knows S and the adversary will choose one instance from S at random to present to the algorithm. We further focus on adversaries that construct sets of k-chromatic instances. In this setting, we provide upper and lower bounds on the competitive ratio for the online graph coloring problem as a function of the parameters in this model. Both bounds are linear in s and matching upper and lower bound are given for a specific set of algorithms that we call “minimalistic online algorithms”.Peer ReviewedPostprint (author's final draft

    Online Multi-Coloring with Advice

    Full text link
    We consider the problem of online graph multi-coloring with advice. Multi-coloring is often used to model frequency allocation in cellular networks. We give several nearly tight upper and lower bounds for the most standard topologies of cellular networks, paths and hexagonal graphs. For the path, negative results trivially carry over to bipartite graphs, and our positive results are also valid for bipartite graphs. The advice given represents information that is likely to be available, studying for instance the data from earlier similar periods of time.Comment: IMADA-preprint-c

    Advice Complexity of the Online Induced Subgraph Problem

    Get PDF
    Several well-studied graph problems aim to select a largest (or smallest) induced subgraph with a given property of the input graph. Examples of such problems include maximum independent set, maximum planar graph, and many others. We consider these problems, where the vertices are presented online. With each vertex, the online algorithm must decide whether to include it into the constructed subgraph, based only on the subgraph induced by the vertices presented so far. We study the properties that are common to all these problems by investigating the generalized problem: for a hereditary property \pty, find some maximal induced subgraph having \pty. We study this problem from the point of view of advice complexity. Using a result from Boyar et al. [STACS 2015], we give a tight trade-off relationship stating that for inputs of length n roughly n/c bits of advice are both needed and sufficient to obtain a solution with competitive ratio c, regardless of the choice of \pty, for any c (possibly a function of n). Surprisingly, a similar result cannot be obtained for the symmetric problem: for a given cohereditary property \pty, find a minimum subgraph having \pty. We show that the advice complexity of this problem varies significantly with the choice of \pty. We also consider preemptive online model, where the decision of the algorithm is not completely irreversible. In particular, the algorithm may discard some vertices previously assigned to the constructed set, but discarded vertices cannot be reinserted into the set again. We show that, for the maximum induced subgraph problem, preemption cannot help much, giving a lower bound of Ω(n/(c2logc))\Omega(n/(c^2\log c)) bits of advice needed to obtain competitive ratio cc, where cc is any increasing function bounded by \sqrt{n/log n}. We also give a linear lower bound for c close to 1

    On the List Update Problem with Advice

    Get PDF
    We study the online list update problem under the advice model of computation. Under this model, an online algorithm receives partial information about the unknown parts of the input in the form of some bits of advice generated by a benevolent offline oracle. We show that advice of linear size is required and sufficient for a deterministic algorithm to achieve an optimal solution or even a competitive ratio better than 15/1415/14. On the other hand, we show that surprisingly two bits of advice are sufficient to break the lower bound of 22 on the competitive ratio of deterministic online algorithms and achieve a deterministic algorithm with a competitive ratio of 5/35/3. In this upper-bound argument, the bits of advice determine the algorithm with smaller cost among three classical online algorithms, TIMESTAMP and two members of the MTF2 family of algorithms. We also show that MTF2 algorithms are 2.52.5-competitive

    Any-Order Online Interval Selection

    Full text link
    We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most kk different interval lengths, we give a simple algorithm that achieves a competitive ratio of 2k2k and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also discuss the case of intervals with arbitrary weights, and show how to convert the single-length algorithm of Fung et al. 2014 into a classify and randomly select algorithm that achieves a competitive ratio of 2k. Finally, we consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals. Finally, we briefly discuss the case of intervals with arbitrary weights.Comment: 19 pages, 11 figure

    Online Bin Packing with Advice

    Get PDF
    We consider the online bin packing problem under the advice complexity model where the 'online constraint' is relaxed and an algorithm receives partial information about the future requests. We provide tight upper and lower bounds for the amount of advice an algorithm needs to achieve an optimal packing. We also introduce an algorithm that, when provided with log n + o(log n) bits of advice, achieves a competitive ratio of 3/2 for the general problem. This algorithm is simple and is expected to find real-world applications. We introduce another algorithm that receives 2n + o(n) bits of advice and achieves a competitive ratio of 4/3 + {\epsilon}. Finally, we provide a lower bound argument that implies that advice of linear size is required for an algorithm to achieve a competitive ratio better than 9/8.Comment: 19 pages, 1 figure (2 subfigures
    corecore