7,229 research outputs found

    Adverse Drug Reaction Classification With Deep Neural Networks

    Get PDF
    We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1

    Review of trends in health social media analysis

    Get PDF
    This paper surveys recent publications (2008-2017) on using social media data to study public health. The survey describes the main topics being discussed in forums and presents short information about methods and tools used for analysis health social media. We put especial attention on adverse drug reaction detection problem (ADR)

    MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions

    Full text link
    Predicting interactions between structured entities lies at the core of numerous tasks such as drug regimen and new material design. In recent years, graph neural networks have become attractive. They represent structured entities as graphs and then extract features from each individual graph using graph convolution operations. However, these methods have some limitations: i) their networks only extract features from a fix-sized subgraph structure (i.e., a fix-sized receptive field) of each node, and ignore features in substructures of different sizes, and ii) features are extracted by considering each entity independently, which may not effectively reflect the interaction between two entities. To resolve these problems, we present MR-GNN, an end-to-end graph neural network with the following features: i) it uses a multi-resolution based architecture to extract node features from different neighborhoods of each node, and, ii) it uses dual graph-state long short-term memory networks (L-STMs) to summarize local features of each graph and extracts the interaction features between pairwise graphs. Experiments conducted on real-world datasets show that MR-GNN improves the prediction of state-of-the-art methods.Comment: Accepted by IJCAI 201

    Named Entity Recognition using Neural Networks for Clinical Notes

    Get PDF
    International audienceCurrently, the best performance for Named Entity Recognition in medical notes is obtained by systems based on neural networks. These supervised systems require precise features in order to learn well fitted models from training data, for the purpose of recognizing medical entities like medication and Adverse Drug Events (ADE). Because it is an important issue before training the neural network, we focus our work on building comprehensive word representations (the input of the neural network), using character-based word representations and word representations. The proposed representation improves the performance of the baseline LSTM. However, it does not reach the performances of the top performing contenders in the challenge for detecting medical entities from clinical notes.Actuellement, la meilleure performance pour la reconnaissance de l'entité nommée dans les notes médicales est obtenue par des systèmes basés sur des réseaux de neurones. Ces systèmes supervisés nécessitent des caractéristiques précises afin d'apprendre des modèles bien ajustés à partir des données de formation, dans le but de reconnaître les entités médicales comme les médicaments et les événements indésirables liés aux médicaments (EIM). Parce qu'il s'agit d'une question importante avant la formation du réseau neuronal, nous concentrons notre travail sur la construction de représentations complètes de mots (l'entrée du réseau neuronal), en utilisant des représentations de mots basés sur des caractères et des représentations de mots. La représentation proposée améliore la performance de la LSTM de référence. Cependant, il n'atteint pas les performances des concurrents les plus performants dans le challenge de détection d'entités médicales à partir de notes cliniques
    • …
    corecore