25 research outputs found

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Generative adversarial networks review in earthquake-related engineering fields

    Get PDF
    Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, and advantageous way to generate reliable synthetic data that represent actual samples' characteristics, providing a handy data augmentation tool. Indeed, in many practical applications, obtaining a significant number of high-quality information is demanding. Data augmentation is generally based on artificial intelligence (AI) and machine learning data-driven models. The DL GAN-based data augmentation approach for generating synthetic seismic signals revolutionized the current data augmentation paradigm. This study delivers a critical state-of-art review, explaining recent research into AI-based GAN synthetic generation of ground motion signals or seismic events, and also with a comprehensive insight into seismic-related geophysical studies. This study may be relevant, especially for the earth and planetary science, geology and seismology, oil and gas exploration, and on the other hand for assessing the seismic response of buildings and infrastructures, seismic detection tasks, and general structural and civil engineering applications. Furthermore, highlighting the strengths and limitations of the current studies on adversarial learning applied to seismology may help to guide research efforts in the next future toward the most promising directions

    Generative models : a critical review

    Full text link
    Dans cette thèse, nous introduisons et motivons la modélisation générative comme une tâche centrale pour l’apprentissage automatique et fournissons une vue critique des algorithmes qui ont été proposés pour résoudre cette tâche. Nous montrons comment la modélisation générative peut être définie mathématiquement en essayant de faire une distribution d’estimation identique à une distribution de vérité de terrain inconnue. Ceci peut ensuite être quantifié en termes de valeur d’une divergence statistique entre les deux distributions. Nous décrivons l’approche du maximum de vraisemblance et comment elle peut être interprétée comme minimisant la divergence KL. Nous explorons un certain nombre d’approches dans la famille du maximum de vraisemblance, tout en discutant de leurs limites. Enfin, nous explorons l’approche antagoniste alternative qui consiste à étudier les différences entre une distribution d’estimation et une distribution de données réelles. Nous discutons de la façon dont cette approche peut donner lieu à de nouvelles divergences et méthodes qui sont nécessaires pour réussir l’apprentissage par l’adversité. Nous discutons également des nouveaux paramètres d’évaluation requis par l’approche contradictoire. Le chapitre ref chap: fortnet montre qu’en apprenant des modèles génératifs des couches cachées d’un réseau profond, on peut identifier quand le réseau fonctionne sur des données différentes des données observées pendant la formation. Cela nous permet d’étudier les différences entre les modes de fonctionnement libre et de forçage des enseignants dans les réseaux récurrents. Cela conduit également à une meilleure robustesse face aux attaques adverses. Le chapitre ref chap: gibbsnet a exploré une procédure itérative pour la génération et l’inférence dans les réseaux profonds, qui est inspirée par la procédure MCMC de gibbs bloquées pour l’échantillonnage à partir de modèles basés sur l’énergie. Cela permet d’améliorer l’inpainting, la génération et l’inférence en supprimant l’exigence que les variables a priori sur les variables latentes aient une distribution connue. Le chapitre ref chap: discreg a étudié si les modèles génératifs pouvaient être améliorés en exploitant les connaissances acquises par des modèles de classification discriminants. Nous avons étudié cela en augmentant les autoencoders avec des pertes supplémentaires définies dans les états cachés d’un classificateur fixe. Dans la pratique, nous avons montré que cela conduisait à des modèles générateurs mettant davantage l’accent sur les aspects saillants des données, et discutait également des limites de cette approche.In this thesis we introduce and motivate generative modeling as a central task for machine learning and provide a critical view of the algorithms which have been proposed for solving this task. We overview how generative modeling can be de ned mathematically as trying to make an estimating distribution the same as an unknown ground truth distribution. This can then be quanti ed in terms of the value of a statistical divergence between the two distributions. We outline the maximum likelihood approach and how it can be interpreted as minimizing KL-divergence. We explore a number of approaches in the maximum likelihood family, while discussing their limitations. Finally, we explore the alternative adversarial approach which involves studying the di erences between an estimating distribution and a real data distribution. We discuss how this approach can give rise to new divergences and methods that are necessary to make adversarial learning successful. We also discuss new evaluation metrics which are required by the adversarial approach. Chapter 2 shows that by learning generative models of the hidden layers of a deep network can identify when the network is being run on data di ering from the data seen during training. This allows us to study di erences between freerunning and teacher forcing modes in recurrent networks. It also leads to improved robustness to adversarial attacks. Chapter 3 explored an iterative procedure for generation and inference in deep networks, which is inspired by the blocked gibbs MCMC procedure for sampling from energy-based models. This achieves improved inpainting, generation, and inference by removing the requirement that the prior over the latent variables have a known distribution. Chapter 4 studied whether generative models could be improved by exploiting the knowledge learned by discriminative classi cation models. We studied this by augmenting autoencoders with additional losses de ned in the hidden states of a xed classi er. In practice we showed that this led to generative models with better focus on salient aspects of the data, and also discussed limitations in this approach

    Multimodal Adversarial Learning

    Get PDF
    Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models are susceptible to adversarial attacks. In the case of generative models, facial sketches drawn by artists mostly used by law enforcement agencies depend on the ability of the artist to clearly replicate all the key facial features that aid in capturing the true identity of a subject. Recent works have attempted to synthesize these sketches into plausible visual images to improve visual recognition and identification. However, synthesizing photo-realistic images from sketches proves to be an even more challenging task, especially for sensitive applications such as suspect identification. However, the incorporation of hybrid discriminators, which perform attribute classification of multiple target attributes, a quality guided encoder that minimizes the perceptual dissimilarity of the latent space embedding of the synthesized and real image at different layers in the network have shown to be powerful tools towards better multi modal learning techniques. In general, our overall approach was aimed at improving target detection systems and the visual appeal of synthesized images while incorporating multiple attribute assignment to the generator without compromising the identity of the synthesized image. We synthesized sketches using XDOG filter for the CelebA, Multi-modal and CelebA-HQ datasets and from an auxiliary generator trained on sketches from CUHK, IIT-D and FERET datasets. Our results overall for different model applications are impressive compared to current state of the art

    Discriminative and Generative Learning with Style Information

    Get PDF
    Conventional machine learning approaches usually assume that the patterns follow the identical and independent distribution (i.i.d.). However, in many empirical cases, such condition might be violated when data are equipped with diverse and inconsistent style information. The effectiveness of those traditional predictors may be limited due to the violation of the i.i.d. assumption brought by the existence of the style inconsistency. In this thesis, we investigate how the style information can be appropriately utilized for further lifting up the performance of machine learning models. It is fulfilled by not only introducing the style information into some state-of-the-art models, some new architectures, frameworks are also designed and implemented with specific purposes to make proper use of the style information. The main work is listed as the following summaries: First, the idea of the style averaging is initially introduced by an example of an image process based sunglasses recovery algorithm to perform robust one-shot facial expression recognition task. It is named as Style Elimination Transformation (SET). By recovering the pixels corrupted by the dark colors of the sunglasses brought by the proposed algorithm, the classification performance is promoted on several state-of-the-art machine learning classifiers even in a one-shot training setting. Then the investigation of the style normalization and style neutralization is investigated with both discriminative and generative machine learning approaches respectively. In discriminative learning models with style information, the style normalization transformation (SNT) is integrated into the support vector machines (SVM) for both classification and regression, named as the field support vector classification (F-SVC) and field support vector regression (F-SVR) respectively. The SNT can be represented with the nonlinearity by mapping the sufficiently complicated style information to the high-dimensional reproducing kernel Hilbert space. The learned SNT would normalize the inconsistent style information, producing i.i.d. examples, on which the SVM will be applied. Furthermore, a self-training based transductive framework will be introduced to incorporate with the unseen styles during training. The transductive SNT (T-SNT) is learned by transferring the trained styles to the unknown ones. Besides, in generative learning with style information, the style neutralization generative adversarial classifier (SN-GAC) is investigated to incorporate with the style information when performing the classification. As a neural network based framework, the SN-GAC enables the nonlinear mapping due to the nature of the nonlinearity of the neural network transformation with the generative manner. As a generalized and novel classification framework, it is capable of synthesizing style-neutralized high-quality humanunderstandable patterns given any style-inconsistent ones. Being learned with the adversarial training strategy in the first step, the final classification performance will be further promoted by fine-tuning the classifier when those style-neutralized examples can be well generated. Finally, the reversed task of the upon-mentioned style neutralization in the SN-GAC model, namely, the generation of arbitrary-style patterns, is also investigated in this thesis. By introducing the W-Net, a deep architecture upgraded from the famous U-Net model for image-to-image translation tasks, the few-shot (even the one-shot) arbitrary-style Chinese character generation task will be fulfilled. Same as the SN-GAC model, the W-Net is also trained with the adversarial training strategy proposed by the generative adversarial network. Such W-Net architecture is capable of generating any Chinese characters with the similar style as those given a few, or even one single, stylized examples. For all the proposed algorithms, frameworks, and models mentioned above for both the prediction and generation tasks, the inconsistent style information is taken into appropriate consideration. Inconsistent sunglasses information is eliminated by an image processing based sunglasses recovery algorithm in the SET, producing style-consistent patterns. The facial expression recognition is performed based on those transformed i.i.d. examples. The SNT is integrated into the SVM model, normalizing the inconsistent style information nonlinearly with the kernelized mapping. The T-SNT further enables the field prediction on those unseen styles during training. In the SN-GAC model, the style neutralization is performed by the neural network based upgraded U-Net architecture. Trained with separated steps with the adversarial optimization strategy included, it produces the high-quality style-neutralized i.i.d. patterns. The following classification is learned to produce superior performance with no additional computation involved. The W-Net architecture enables the free manipulation of the style data generation task with only a few, or even one single, style reference(s) available. It makes the Few-shot, or even the One-shot, Chinese Character Generation with the Arbitrary-style information task to be realized. Such appealing property is hardly seen in the literature

    Discriminative and Generative Learning with Style Information

    Get PDF
    Conventional machine learning approaches usually assume that the patterns follow the identical and independent distribution (i.i.d.). However, in many empirical cases, such condition might be violated when data are equipped with diverse and inconsistent style information. The effectiveness of those traditional predictors may be limited due to the violation of the i.i.d. assumption brought by the existence of the style inconsistency. In this thesis, we investigate how the style information can be appropriately utilized for further lifting up the performance of machine learning models. It is fulfilled by not only introducing the style information into some state-of-the-art models, some new architectures, frameworks are also designed and implemented with specific purposes to make proper use of the style information. The main work is listed as the following summaries: First, the idea of the style averaging is initially introduced by an example of an image process based sunglasses recovery algorithm to perform robust one-shot facial expression recognition task. It is named as Style Elimination Transformation (SET). By recovering the pixels corrupted by the dark colors of the sunglasses brought by the proposed algorithm, the classification performance is promoted on several state-of-the-art machine learning classifiers even in a one-shot training setting. Then the investigation of the style normalization and style neutralization is investigated with both discriminative and generative machine learning approaches respectively. In discriminative learning models with style information, the style normalization transformation (SNT) is integrated into the support vector machines (SVM) for both classification and regression, named as the field support vector classification (F-SVC) and field support vector regression (F-SVR) respectively. The SNT can be represented with the nonlinearity by mapping the sufficiently complicated style information to the high-dimensional reproducing kernel Hilbert space. The learned SNT would normalize the inconsistent style information, producing i.i.d. examples, on which the SVM will be applied. Furthermore, a self-training based transductive framework will be introduced to incorporate with the unseen styles during training. The transductive SNT (T-SNT) is learned by transferring the trained styles to the unknown ones. Besides, in generative learning with style information, the style neutralization generative adversarial classifier (SN-GAC) is investigated to incorporate with the style information when performing the classification. As a neural network based framework, the SN-GAC enables the nonlinear mapping due to the nature of the nonlinearity of the neural network transformation with the generative manner. As a generalized and novel classification framework, it is capable of synthesizing style-neutralized high-quality humanunderstandable patterns given any style-inconsistent ones. Being learned with the adversarial training strategy in the first step, the final classification performance will be further promoted by fine-tuning the classifier when those style-neutralized examples can be well generated. Finally, the reversed task of the upon-mentioned style neutralization in the SN-GAC model, namely, the generation of arbitrary-style patterns, is also investigated in this thesis. By introducing the W-Net, a deep architecture upgraded from the famous U-Net model for image-to-image translation tasks, the few-shot (even the one-shot) arbitrary-style Chinese character generation task will be fulfilled. Same as the SN-GAC model, the W-Net is also trained with the adversarial training strategy proposed by the generative adversarial network. Such W-Net architecture is capable of generating any Chinese characters with the similar style as those given a few, or even one single, stylized examples. For all the proposed algorithms, frameworks, and models mentioned above for both the prediction and generation tasks, the inconsistent style information is taken into appropriate consideration. Inconsistent sunglasses information is eliminated by an image processing based sunglasses recovery algorithm in the SET, producing style-consistent patterns. The facial expression recognition is performed based on those transformed i.i.d. examples. The SNT is integrated into the SVM model, normalizing the inconsistent style information nonlinearly with the kernelized mapping. The T-SNT further enables the field prediction on those unseen styles during training. In the SN-GAC model, the style neutralization is performed by the neural network based upgraded U-Net architecture. Trained with separated steps with the adversarial optimization strategy included, it produces the high-quality style-neutralized i.i.d. patterns. The following classification is learned to produce superior performance with no additional computation involved. The W-Net architecture enables the free manipulation of the style data generation task with only a few, or even one single, style reference(s) available. It makes the Few-shot, or even the One-shot, Chinese Character Generation with the Arbitrary-style information task to be realized. Such appealing property is hardly seen in the literature

    On the Design, Implementation and Application of Novel Multi-disciplinary Techniques for explaining Artificial Intelligence Models

    Get PDF
    284 p.Artificial Intelligence is a non-stopping field of research that has experienced some incredible growth lastdecades. Some of the reasons for this apparently exponential growth are the improvements incomputational power, sensing capabilities and data storage which results in a huge increment on dataavailability. However, this growth has been mostly led by a performance-based mindset that has pushedmodels towards a black-box nature. The performance prowess of these methods along with the risingdemand for their implementation has triggered the birth of a new research field. Explainable ArtificialIntelligence. As any new field, XAI falls short in cohesiveness. Added the consequences of dealing withconcepts that are not from natural sciences (explanations) the tumultuous scene is palpable. This thesiscontributes to the field from two different perspectives. A theoretical one and a practical one. The formeris based on a profound literature review that resulted in two main contributions: 1) the proposition of anew definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy for the field.The latter is composed of two XAI frameworks that accommodate in some of the raging gaps found field,namely: 1) XAI framework for Echo State Networks and 2) XAI framework for the generation ofcounterfactual. The first accounts for the gap concerning Randomized neural networks since they havenever been considered within the field of XAI. Unfortunately, choosing the right parameters to initializethese reservoirs falls a bit on the side of luck and past experience of the scientist and less on that of soundreasoning. The current approach for assessing whether a reservoir is suited for a particular task is toobserve if it yields accurate results, either by handcrafting the values of the reservoir parameters or byautomating their configuration via an external optimizer. All in all, this poses tough questions to addresswhen developing an ESN for a certain application, since knowing whether the created structure is optimalfor the problem at hand is not possible without actually training it. However, some of the main concernsfor not pursuing their application is related to the mistrust generated by their black-box" nature. Thesecond presents a new paradigm to treat counterfactual generation. Among the alternatives to reach auniversal understanding of model explanations, counterfactual examples is arguably the one that bestconforms to human understanding principles when faced with unknown phenomena. Indeed, discerningwhat would happen should the initial conditions differ in a plausible fashion is a mechanism oftenadopted by human when attempting at understanding any unknown. The search for counterfactualsproposed in this thesis is governed by three different objectives. Opposed to the classical approach inwhich counterfactuals are just generated following a minimum distance approach of some type, thisframework allows for an in-depth analysis of a target model by means of counterfactuals responding to:Adversarial Power, Plausibility and Change Intensity

    An Analysis on Adversarial Machine Learning: Methods and Applications

    Get PDF
    Deep learning has witnessed astonishing advancement in the last decade and revolutionized many fields ranging from computer vision to natural language processing. A prominent field of research that enabled such achievements is adversarial learning, investigating the behavior and functionality of a learning model in presence of an adversary. Adversarial learning consists of two major trends. The first trend analyzes the susceptibility of machine learning models to manipulation in the decision-making process and aims to improve the robustness to such manipulations. The second trend exploits adversarial games between components of the model to enhance the learning process. This dissertation aims to provide an analysis on these two sides of adversarial learning and harness their potential for improving the robustness and generalization of deep models. In the first part of the dissertation, we study the adversarial susceptibility of deep learning models. We provide an empirical analysis on the extent of vulnerability by proposing two adversarial attacks that explore the geometric and frequency-domain characteristics of inputs to manipulate deep decisions. Afterward, we formalize the susceptibility of deep networks using the first-order approximation of the predictions and extend the theory to the ensemble classification scheme. Inspired by theoretical findings, we formalize a reliable and practical defense against adversarial examples to robustify ensembles. We extend this part by investigating the shortcomings of \gls{at} and highlight that the popular momentum stochastic gradient descent, developed essentially for natural training, is not proper for optimization in adversarial training since it is not designed to be robust against the chaotic behavior of gradients in this setup. Motivated by these observations, we develop an optimization method that is more suitable for adversarial training. In the second part of the dissertation, we harness adversarial learning to enhance the generalization and performance of deep networks in discriminative and generative tasks. We develop several models for biometric identification including fingerprint distortion rectification and latent fingerprint reconstruction. In particular, we develop a ridge reconstruction model based on generative adversarial networks that estimates the missing ridge information in latent fingerprints. We introduce a novel modification that enables the generator network to preserve the ID information during the reconstruction process. To address the scarcity of data, {\it e.g.}, in latent fingerprint analysis, we develop a supervised augmentation technique that combines input examples based on their salient regions. Our findings advocate that adversarial learning improves the performance and reliability of deep networks in a wide range of applications
    corecore